Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu a
Xét tam giác ABD và AMD có
AB = AM từ gt
Góc BAD = MAD vì AD phân giác BAM
AD chung
=> 2 tam guacs bằng nhau
Câu b
Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD
Bd = bm vì 2 tam giác ở câu a bằng nhau
Góc BDE bằng MDC đối đỉnh
=> 2 tam giác bằng nhau
B A C D E F
a)Xét \(\Delta ABD\) và \(\Delta EDB\)có:
\(\widehat{BAD}=\widehat{BED}\left(=90\right);\widehat{ABD}=\widehat{EBD}\)và BD chung
\(\Rightarrow\Delta ABD=\Delta EDB\)(cạnh huyền - góc nhọn)
b) Từ câu a => AD = EB(2 cạnh tương ứng)
\(\Rightarrow\Delta ADF=\Delta FDC\left(g-c-g\right)\)(Bạn tự CM nha)
=> DF = DC (2 cạnh tương ứng)
=> \(\Delta FDC\)cân tại D
Câu b mình có cách khác nhưng chả biết bạn học tới chưa. Thôi cứ tham khảo nhé chứ cách bạn kia ngắn gọn lắm rồi
Cách mình chứng minh góc DFC = góc FCD
Xét tam giác ABC có 2 đường cao FE;AC cắt nhau tại D
=> D là trực tâm tam giác ABC
=> BD là đường cao thứ 3
=> BD vuông góc FC tại D
Xét tam giác BFC có BD vừa là phân giác vừa là đường cao
=> tam giác BFC cân tại B
=> góc BFC = góc BCF
Vì tam giác ABD = tam giác EDB => AD = DE (hai cạnh tương ứng)
Xét tam giác ADF và tam giác DEC có:
góc ADF = góc EDC (đối đỉnh)
góc DAF = góc DEC = 90 độ (gt)
AD = DE (cmt)
=> tam giác ADF = tam giác EDC (g.c.g)
=> góc AFD = góc DCE (hai góc t.ứng)
Mà: góc BFC = góc BCF
=> góc DFC = góc DCF
=> tam giác FDC cân tại F
Xong!! =)))
A B C 3 5 4 D E F 1 2 3 4 1 2 1 2 1 2
a) Ta có : \(BC^2\)= \(5^2\)= 25 cm
\(AB^2\)+ \(AC^2\)= \(3^2\)+\(4^2\)= 25 cm
Áp dụng định lí Py-ta-go đảo ta có :
\(BC^2\)= \(AB^2\)+\(AC^2\)( 25 = 25)
Vậy \(\Delta\)ABC là \(\Delta\)vuông và vuông tại A
b) Xét \(\Delta\)BAD và \(\Delta\)BED có
\(\widehat{B_1}\)= \(\widehat{B_2}\)( do BD là tia phân giác \(\widehat{B}\))
AB = BE ( GT )
BD cạnh chung
Vậy \(\Delta\)BAD = \(\Delta\)BED ( c-g-c )
Hình tự vẽ nha
a ) Vì AB = 3 ( gt ) => AB2 = 9
AC = 4 ( gt ) => AC2 = 16
BC = 5 ( gt ) => BC2 = 25
MÀ 25 = 9 + 16
DO đó BC2 = AB2 + AC2
=> \(\Delta\)ABC vuông tại A ( định lí đảo định lí py ta go )
Vậy \(\Delta\)ABC vuông tại A
b ) Vì \(\Delta\)ABC vuông tại A ( CM a ) => BAC = 90o hay BAD = 90o
Vì DE \(\perp\)BC ( gt ) => BED = DEC = 90o ( định nghĩa 2 đường thẳng vuông góc )
Vì BD là tia phân giác của góc B ( gt ) => ABD = EBD
Xét \(\Delta\)ABD và \(\Delta\)EBD có :
ABD = EBD ( cmt )
BD chung
BAD = BED ( = 90o )
DO đó \(\Delta\)ABD = \(\Delta\)EBD ( cạnh huyền - góc nhọn )
=> DA = DE ( 2 cạnh tương ứng )
Vậy ..
Hình tự vẽ
phần a cậu có thể tự làm :))
b+c)Xét \(\Delta\)ABD và\(\Delta\) EBD có:
AB=AE(gt)
BD(chung)
góc B1 = góc B2
=> \(\Delta\)ABD=\(\Delta\)EBD
=> AD=DE
=>\(\Delta\)ADE cân tại D(2)
Mà BD là tia pg(1)
Từ (1) và (2) => BD là đường cao của tam giác ABC
=> BD\(\perp\) AE
~Hok tốt~
\(\Delta\)
À ừ :vv tớ giải all lại nek
a) \(\Delta\)ABC là tam giác vuông
b+c) Xét \(\Delta\)ABD và \(\Delta\) EBD có:
AB=BE(gt)
BD(chung)
Góc B1=góc B2
=>\(\Delta\)ABD=\(\Delta\)EBD
=>AD= ED
=>\(\Delta\)ADE cân tại D(1)
Mà BD là tí pg của góc B(2)
Từ (1) và (2) => BD là đường cao của \(\Delta\)ABC
=>BD\(\perp\)AE
d) Ta có: BD\(\perp\) FC
AE\(\perp\)BC
Mà D là trực tâm
=> AE // FC
~Hok tốt :^~
bn tự vẽ hình nha
a) xét tam giác ABC vuông tại A
=> AB^2 + AC^2 = AC^2 ( định lý py-ta-go )
=> 3^2 + 4^2 = AC^2 ( vì AB= 3 cm ; AC= 4 cm)
AC^2 = 25
=> AC=5 (cm)
b) xét tam giác ABD vuông tại A
tam giác EBD vuông tại E
có BD là cạnh chung
góc ABD = góc EBD ( BD là tia phân giác của góc B)
=> tam giác ABD = t
XIN LỖI MK ẤN NHẦM
=> tam giác ABD = tam giác EBD(cạnh huyền - góc nhọn)
c) xét tam giác ADI vuông tại A
tam giác EDC vuông tại E
có AD = ED (2 cạnh tương ứng của tam giác ABD = tam giác EBD)
góc ADI = góc EDC ( 2 góc đối đỉnh )
=> tam giác ADI = tam giác EDC
=> ID = CD ( 2 cạnh tương ứng )
=> tam giác IDC cân tại D
d) xét tam giác EDC vuông tại E
=> ED < DC ( trong tam giác vuông cạnh huyền là cạnh lớn nhất)
mà AD = ED (2 cạnh tương ứng của tam giác ABD = tam giác EBD)
=> AD < DC