Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Áp dụng định lý Py-ta-go vào tam giác ABC vuông tại C có:
\(AB^2=AC^2+BC^2\Rightarrow AB^2=0,9^2+1,2^2=2,25\\ \Rightarrow AB=1,5\left(m\right)\)
Vì góc A và góc B là 2 góc phụ nhau nên ta có:
\(\sin B=\cos A=\frac{AC}{AB}=\frac{0,9}{1,5}=\frac{3}{5}\)
\(\cos B=sinA=\frac{BC}{AB}=\frac{1,2}{1,5}=\frac{4}{5}\)
\(tanB=cotA=\frac{AC}{BC}=\frac{0,9}{1,2}=\frac{3}{4}\)
\(cotB=tanA=\frac{BC}{AC}=\frac{1,2}{0,9}=\frac{4}{3}\)
AB = \(\sqrt{AB^2+AB^2}\) = 2.25 ( pytago )
=> AB = 1.5 (m)
Vì góc A và góc B phụ nhau, ta có:
sin B = cosA= AC/AB = 3/5
cos B = sin A = BC/AB = 4/5
tan B = cot A = AC/BC = 3/4
cot B = tan A = BC/AC = 4/3

AB=21/(3+4)x3=9 cm
AC=21-9=12cm
Tự kẻ hình bạn nhé =)))
Áp dụng định lí Pitago vào tam giác ABC , có
AB^2+AC^2=BC^2
=>thay số vào, tính được BC=15cm
Áp dụng hệ thức giữa cạnh và đường cao trong tg vuông, có:
AB^2=BHxBC
=>BH=81/15=5.4cm
=>CH=15-5.4=9.6cm
AH^2=BHxCH=5.4x9.6=51.84cm

Câu 1: Tam giác ABC vuông tại A có AM là đường trung tuyến ứng với cạnh huyền BC
=> AM=\(\frac{1}{2}\)BC mà AM=6 cm=> BC=12cm.
Tam giác ANB vuông tại A có AN2+AB2=BN2 (Theo Pytago) mà BN=9cm (gt)
=>AN2+AB2=81 Lại có AN=\(\frac{1}{2}\)AC =>\(\frac{1}{2}\)AC2+AB2=81 (1)
Tam giác ABC vuông tại A có: AC2+AB2=BC2 => BC2 - AB2 = AC2 (2)
Từ (1) và (2) suy ra \(\frac{1}{4}\)* (BC2 - AB2)+AB2=81 mà BC=12(cmt)
=> 36 - \(\frac{1}{4}\)AB2+AB2=81
=> 36+\(\frac{3}{4}\)AB2=81
=> AB2=60=>AB=\(\sqrt{60}\)
C2
Cho hình thang cân ABCD có đáy lớn CD = 1
C4
Câu hỏi của Thiên An - Toán lớp 9 - Học toán với OnlineMath

bài 9
tam giác ABC vuông tại A có
* BC2=AB2+AC2
BC2=152+202=625
BC=25cm
* AH.BC=AB.AC
AH.25=15.20
AH.25=300
AH=12cm
tam giác ABH vuông tại H có
BH2=AB2-AH2
BH2=152-122=81
BH=9cm
tam giác ABC vuông tại A có
*AB2=BH.BC
225=9.BC
BC=25cm
CH=BC-BH=25-9=16cm
*AC2=BC2-AB2
AC2=252-152=400
AC=20cm

Xét ΔABC vuông tại A có
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow AC=12\left(cm\right)\)
\(\Leftrightarrow AB=9\left(cm\right)\)
hay AH=7,2(cm)