Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tự vẽ hình nha
a) xét tam giác HAB và tam giác ABC
góc AHB = góc ABC
góc CAB : chung
Suy ra : tam giác AHB ~ tam giác ABC ( g-g )
b) Áp dụng định lí py - ta - go vào tam giác ABC ta được :
AC2 + AB2 = BC2
162 + 122 = BC2
400 = BC2
=> BC = \(\sqrt{400}\)= 20 ( cm )
ta có tam giác HAB ~ tam giác ABC ( câu a )
=> \(\frac{AH}{AC}=\frac{AB}{BC}hay\frac{AH}{16}=\frac{12}{20}\)
=> AH = \(\frac{12.16}{20}=9,6\)( cm )
Độ dài cạnh BH là
Áp dụng định lí py - ta - go vào tam giác HBA ta được :
AH2 + BH2 = AB2
BH2 = AB2 - AH2
BH2 = 122 - 9,62
BH2 = 51,84
=> BH = \(\sqrt{51,84}\) = 7,2 ( cm )
c) Vì AD là đường phân giác của tam giác ABC nên :
\(\frac{AB}{BD}=\frac{AC}{CD}\Leftrightarrow\frac{AB}{BC-CD}=\frac{AC}{CD}\)
<=> \(\frac{AB.CD}{CD\left(BC-CD\right)}=\frac{AC\left(BC-CD\right)}{CD\left(BC-CD\right)}\)
<=> AB.CD = AC(BC - CD)
hay 12CD = 16.20 - 16CD
<=> 12CD+ 16CD = 320
<=> 28CD = 320
<=> CD = \(\frac{320}{28}\approx11.43\left(cm\right)\)
Độ dài cạnh BD là :
BD = BC - CD
BD = 20 - \(\frac{320}{28}\)\(\approx\) 8,57 ( cm )
Cho hỏi đồng dạng là sao bạn???Tớ mới học lớp 7 thôi,nên chưa biết ^^
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
Do đó: ΔABC\(\sim\)ΔHBA
b: \(BC=\sqrt{AB^2+AC^2}=20\left(cm\right)\)
\(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{12\cdot16}{20}=9.6\left(cm\right)\)
\(BH=\sqrt{12^2-9.6^2}=7.2\left(cm\right)\)
a) Xét ΔHBA và ΔABC có
\(\widehat{B }\) chung
\(\widehat{BHA}=\widehat{BAC}\)=90o
=> ΔHBA ∼ ΔABC (gg)
b) xét ΔABC có \(\widehat{BAC} \)=90o
=> AC2+AB2=BC2 (đl pitago)
=>162+122=BC2
=> BC=20 cm
Ta có SΔABC=\(\dfrac{AB.AC}{2}=\dfrac{AH.BC}{2}\)
=> AB.AC=AH.BC
=>12.16=AH.20
=> AH=9.6
Xét ΔABH có \(\widehat{BHA}\)=90o
=> HA2+HB2=AB2 (đl pitago)
=>9.62 + HB2=122
=> HB=7.2 cm
c) Xét ΔABC có
AD là phân giác (D∈BC)
=> \(\dfrac{BD}{CD}=\dfrac{AB}{AC}=\dfrac{12}{16}=\dfrac{3}{4}\)(tc đường pg trong Δ)
=>\(\dfrac{BD}{BC-BD}=\dfrac{3}{4}\)=>\(\dfrac{BD}{20-BD}=\dfrac{3}{4}\)
=> BD=\(\dfrac{60}{7}\) cm
=> CD=20 - \(\dfrac{60}{7}\)=\(\dfrac{80}{7}\) cm
d) Xét ΔAHC có
KN // HC (MN//BC , K ∈ MN , H∈ BC,(K∈AH ,N∈AC))
=> \(\dfrac{AN}{AC}=\dfrac{AK}{AH}=\dfrac{KN}{HC}\)( hệ quả đl ta-lét)
=>\(\dfrac{AN}{AC}=\dfrac{3.6}{9.6}=\dfrac{KN}{HC}\)
Xét ΔABC có
MN// BC (M∈AB ,N∈AC)
=> \(\dfrac{AN}{AC}=\dfrac{MN}{BC}\)=>\(\dfrac{3.6}{9.6}=\dfrac{MN}{20}\) => MN =7.5 cm
KH=AH-KH =9.6-3.6=6 cm
Xét tg MNCB có MN//BC
=> tg MNCB là hình bình hành (dhnb)
có AH⊥BC => KH⊥BC (K∈AH)
=> SBMNC = \(\dfrac{KH.\left(MN+BC\right)}{2}\)=\(\dfrac{6.\left(7.5+20\right)}{2}\)=82.5cm2
Sửa đề: AD là đường phân giác
a) Tính BC
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=12^2+16^2=400\)
hay BC=20(cm)
Vậy: BC=20cm
b) Xét ΔABC có AD là đường phân giác ứng với cạnh BC(gt)
nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)(Tính chất đường phân giác của tam giác)
hay \(\dfrac{BD}{12}=\dfrac{CD}{16}\)
mà BD+CD=BC(D nằm giữa B và C)
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BD}{12}=\dfrac{CD}{16}=\dfrac{BD+CD}{12+16}=\dfrac{BC}{28}=\dfrac{20}{28}=\dfrac{5}{7}\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{BD}{12}=\dfrac{5}{7}\\\dfrac{CD}{16}=\dfrac{5}{7}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BD=\dfrac{60}{7}\left(cm\right)\\CD=\dfrac{80}{7}\left(cm\right)\end{matrix}\right.\)
Vậy: \(BD=\dfrac{60}{7}cm\); \(CD=\dfrac{80}{7}cm\)
a: ΔACB vuông tại A co AH vuông góc BC
nên AB^2=BH*BC
b: \(BC=\sqrt{12^2+16^2}=20\left(cm\right)\)
BD là phân giác
=>AD/AB=CD/BC
=>AD/3=CD/5=16/8=2
=>AD=6cm
Do bạn SSBĐ Love HT làm được câu a) rồi nên mình làm nốt câu b) còn lại nhé :
a) Ta tính được : \(BC=20cm,BD=DC=10cm\)
b) Do \(\Delta ABC\) vuông ở A, có \(AH\perp BC\)
\(\Rightarrow S_{ABC}=\frac{1}{2}\cdot AB\cdot AC=\frac{1}{2}\cdot AH\cdot BC\)
\(\Leftrightarrow12\cdot16=AH\cdot20\)
\(\Leftrightarrow AH=\frac{48}{5}\left(cm\right)\)
Áp dụng định lý Pytago cho các tam giác vuông ta có :
+) \(\Delta ABH\) vuông tại H \(\Rightarrow AB^2=AH^2+BH^2\)
\(\Leftrightarrow12^2=\left(\frac{48}{5}\right)^2+BH^2\)
\(\Leftrightarrow BH=\frac{36}{5}\left(cm\right)\)
\(\Rightarrow HD=BD-BH=10-\frac{36}{5}=\frac{14}{5}\left(cm\right)\)
+) \(\Delta AHD\) vuông tại H \(\Rightarrow AD^2=AH^2+HD^2\)
\(\Rightarrow AD^2=\left(\frac{48}{5}\right)^2+\left(\frac{14}{5}\right)^2\)
\(\Rightarrow AD=10cm\)
Vậy : \(AH=\frac{48}{5}\left(cm\right),HD=\frac{14}{5}\left(cm\right),AD=10\left(cm\right)\)
a)ΔABC vuông tại A
Áp dụng định lí Pitago:
⇒ BC=\(\sqrt{AB^2+AC^2}=\sqrt{12^2+16^2}=20cm\)
AD là tia phân giác ta có:
\(\frac{AB}{AC}\)=\(\frac{BD}{DC}\)Hay \(\frac{AB}{AC}\)=\(\frac{BD}{BC-BD}\)=\(\frac{12}{16}\)=\(\frac{3}{4}\)
\(\Rightarrow\frac{BD}{20-BD}\)=\(\frac{3}{4}\)\(\rightarrow\)4BD=60-3BD⇒ BD=8\(\times\)6cm
⇒ CD=BC-BD=20-8,6=11,4cm
b)Xét ΔAHB và ΔABC
\(\widehat{CAB}\)là góc chung
\(\widehat{AHB}=\widehat{ABC}\)
⇒ΔAHB đồng dạng ΔABC
\(\frac{AH}{AC}\)=\(\frac{AB}{AC}\)
⇒AH=\(\frac{AC\times AB}{BC}\)=\(\frac{16-12}{20}\)=\(9,6cm\)
Áp dụng hệ thức lượng : BH=\(\frac{36}{5}\);\(CH=\frac{64}{5}\)
⇒ HD=BD-BH=8\(\times\)6−\(\frac{36}{5}\)=1,4cm
ΔDHA vuông tại H
⇒AD=\(\sqrt{AH^2+HD^2}=\sqrt{9\times6^2+1\times4^2}=9,7cm\)
Đáp án:a)BC=20cm; BD=8.6cm; CD=11,4cm
b)AH=9.6cm; HD=1.4cm; AD=9.7cm
1: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
Do đó: ΔHBA\(\sim\)ΔABC
2: \(BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\)
\(AH=\dfrac{AB\cdot AC}{BC}=4.8\left(cm\right)\)
Theo định lí Pytago tam giác ABC vuông tại A
\(BC=\sqrt{AB^2+AC^2}=20cm\)
Vì AD là pg
\(\dfrac{AB}{AC}=\dfrac{BD}{CD}\Rightarrow\dfrac{CD}{AC}=\dfrac{BD}{AB}\)
Theo tc dãy tỉ số bằng nhau
\(\dfrac{CD}{AC}=\dfrac{BD}{AB}=\dfrac{BC}{AC+AC}=\dfrac{20}{28}=\dfrac{5}{7}\Rightarrow CD=\dfrac{80}{7}cm;BD=\dfrac{60}{7}cm\)
Áp dụng định lí pitago, ta có:
\(BC^2=AB^2+AC^2\)
\(\Rightarrow BC=\sqrt{12^2+16^2}=\sqrt{400}=20cm\)
Ta có: AD là đường phân giác góc A nên:
\(\dfrac{AB}{AC}=\dfrac{BD}{CD}\)
\(\Leftrightarrow\dfrac{12}{16}=\dfrac{BD}{CD}\Leftrightarrow\dfrac{3}{4}=\dfrac{BD}{CD}\)
\(\Leftrightarrow\dfrac{CD}{4}=\dfrac{BD}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{CD}{4}=\dfrac{BD}{3}=\dfrac{CD+BD}{4+3}=\dfrac{20}{7}\)
\(\Rightarrow CD=\dfrac{20}{7}.4=\dfrac{80}{7}\)
\(\Rightarrow BD=\dfrac{20}{7}.3=\dfrac{60}{7}\)