K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 3 2021

1, a, Áp dụng định lý Pi-ta-go vào ΔΔ vuông ABCABC có:

AB2+AC2=BC2⇔BC=20AB2+AC2=BC2⇔BC=20 (cm)

Do AD là phần giác ˆAA^ theo tính chất đường phân giác ta có:

BDCD=ABAC=1216=34BDCD=ABAC=12/16=3/4

⇒BD/BD+CD=3/3+4⇒BD/BC=3/7⇒BD/BD+CD=3/3+4⇒BD/BC=3/7

⇒BD=3/7BC=60/7⇒BD=3/7BC=6/07

⇒DC=BC−BD=807⇒DC=BC−BD=807

b, AH là đường cao ΔΔ vuông ABC nên:

SΔABC=AH.BC/2=AB.AC2SΔABC=AH.BC2=AB.AC/2

⇒AH=AB.C/BC=48/5⇒AH=AB.C/BC=48/5 (cm)

Ta có:

BH2=AB2−AH2⇒BH=365BH2=AB2−AH2⇒BH=365 (cm)

⇒DH=BD=BH=4835⇒DH=BD=BH=4835 (cm)

AD2=DH2+AH2⇒AD=48√2/7AD2=DH2+AH2⇒AD=4827 (cm)

Bài 2, a,

Xét hai ΔABMΔABM và ΔACNΔACN có:

ˆAA^ chung

AB=ACAB=AC

ˆABM=ˆACNABM^=ACN^ (=12ˆB=12ˆC)(=12B^=12C^)

⇒ΔABM=ΔACN⇒ΔABM=ΔACN (g.c.g)

⇒AM=AN⇒AM=AN (hai cạnh tương ứng)

Ta có: AM=AN và AB=AC ⇒ANAB=AMAC⇒MN//BC⇒ANAB=AMAC⇒MN//BC (Ta-lét đảo)

b, Do BM là phân giác ˆBB^ theo tính chất đường phân giác ta có:

AM/MC=AB/BC=5/6AM/MC=AB/BC=5/6

⇒AM/AM+MC=5/5+6⇒AM/AC=5/11⇒AM/AM+MC=55+6⇒AM/AC=511

⇒AM=5/11AC=25/11⇒AM=5/11AC=25/11 (cm)

⇒MC=AC−AM=30/11⇒MC=AC−AM=30/11 (cm)

MN//BC⇒MN/BC=AM/AC=5/11MN//BC⇒MNBC=AMAC=5/11

⇒MN=5/11BC=3011⇒MN=51/1BC=30/11 (cm).

imagerotate

image

image

17 tháng 3 2021

vào fun english ủng hộ mk nha

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có

góc B chung

=>ΔHBA đồng dạng với ΔABC

b: BC=căn 12^2+16^2=20cm

c: AD là phân giác

=>BD/CD=AB/AC=3/4

=>S ABD/S ACD=3/4

d: BD/CD=3/4

=>BD/3=CD/4

mà BD+CD=10

nên BD/3=CD/4=10/7

=>BD=30/7cm; CD=40/7cm

14 tháng 3 2022

`Answer:`

Sửa đề câu a.: Tính tỉ số diện tích hai tam giác ABD và tam giác ACD nhé.

C D H A B

a. `\triangleABD` và `\triangleACD` có chung đường cao hạ từ `A`

\(\Rightarrow\frac{S_{ABD}}{S_{ACD}}=\frac{BD}{CD}=\frac{AB}{AC}=\frac{12}{16}=\frac{3}{4}\)

b. Áp dụng định lý Pytago: `AB^2+AC^2=BC^2<=>12^2+16^2=BC^2<=>BC^2=400<=>BC=20cm`

c. Ta có: `BC=BD+CD=20cm`

Mà `\frac{BD}{CD}=3/4=>\frac{BD}{3}=\frac{CD}{4}=\frac{BD+CD}{3+4}=\frac{20}{7}`\(\Rightarrow\hept{\begin{cases}BD=\frac{60}{7}cm\\CD=\frac{80}{7}cm\end{cases}}\)

d. \(S_{ABC}=\frac{1}{2}.AB.AC=\frac{1}{2}.AH.BC\Rightarrow AH=\frac{12.16}{20}=9,6cm\)

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

Do đó: ΔABC\(\sim\)ΔHBA

b: Xét ΔHBA vuông tại H và ΔHAC vuông tại H có 

\(\widehat{HBA}=\widehat{HAC}\)

Do đó: ΔHBA\(\sim\)ΔHAC

Suy ra: HB/HA=HA/HC

hay \(HA^2=HB\cdot HC\)

10 tháng 5 2022

tham khảo 

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

Do đó: ΔABC∼∼ΔHBA

b: Xét ΔHBA vuông tại H và ΔHAC vuông tại H có 

ˆHBA=ˆHACHBA^=HAC^

Do đó: ΔHBA∼∼ΔHAC

Suy ra: HB/HA=HA/HC

hay HA2=HB⋅HC

20 tháng 3 2022

e tham khảo câu a

undefined

a) Xét ΔABC vuông tại A và ΔHBA vuông tại H có 

\(\widehat{ABC}\) chung

Do đó: ΔABC\(\sim\)ΔHBA(g-g)

b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=9^2+12^2=225\)

hay BC=15(cm)

Vậy: BC=15cm

b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=12^2+16^2=400\)

hay BC=20(cm)

Vậy: BC=20cm

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có

\(\widehat{B}\) chung

Do đó: ΔHBA đồng dạng với ΔABC

b: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC^2=12^2+16^2=400\)

=>\(BC=\sqrt{400}=20\left(cm\right)\)

c: Xét ΔABC có AD là phân giác

nên \(\dfrac{BD}{CD}=\dfrac{AB}{AC}=\dfrac{3}{4}\)

=>\(S_{ABD}=\dfrac{3}{4}\cdot S_{ACD}\)

d: Ta có: \(\dfrac{BD}{CD}=\dfrac{3}{4}\)

=>\(\dfrac{BD}{3}=\dfrac{CD}{4}\)

mà BD+CD=BC=20

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{20}{7}\)

=>\(BD=\dfrac{20}{7}\cdot3=\dfrac{60}{7}\left(cm\right);CD=\dfrac{20}{7}\cdot4=\dfrac{80}{7}\left(cm\right)\)

e: Xét ΔABC vuông tại A có AH là đường cao

nên \(AH\cdot BC=AB\cdot AC\)

=>\(AH\cdot20=12\cdot16=192\)

=>AH=192/20=9,6(cm)