K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 3 2021

1, a, Áp dụng định lý Pi-ta-go vào ΔΔ vuông ABCABC có:

AB2+AC2=BC2⇔BC=20AB2+AC2=BC2⇔BC=20 (cm)

Do AD là phần giác ˆAA^ theo tính chất đường phân giác ta có:

BDCD=ABAC=1216=34BDCD=ABAC=12/16=3/4

⇒BD/BD+CD=3/3+4⇒BD/BC=3/7⇒BD/BD+CD=3/3+4⇒BD/BC=3/7

⇒BD=3/7BC=60/7⇒BD=3/7BC=6/07

⇒DC=BC−BD=807⇒DC=BC−BD=807

b, AH là đường cao ΔΔ vuông ABC nên:

SΔABC=AH.BC/2=AB.AC2SΔABC=AH.BC2=AB.AC/2

⇒AH=AB.C/BC=48/5⇒AH=AB.C/BC=48/5 (cm)

Ta có:

BH2=AB2−AH2⇒BH=365BH2=AB2−AH2⇒BH=365 (cm)

⇒DH=BD=BH=4835⇒DH=BD=BH=4835 (cm)

AD2=DH2+AH2⇒AD=48√2/7AD2=DH2+AH2⇒AD=4827 (cm)

Bài 2, a,

Xét hai ΔABMΔABM và ΔACNΔACN có:

ˆAA^ chung

AB=ACAB=AC

ˆABM=ˆACNABM^=ACN^ (=12ˆB=12ˆC)(=12B^=12C^)

⇒ΔABM=ΔACN⇒ΔABM=ΔACN (g.c.g)

⇒AM=AN⇒AM=AN (hai cạnh tương ứng)

Ta có: AM=AN và AB=AC ⇒ANAB=AMAC⇒MN//BC⇒ANAB=AMAC⇒MN//BC (Ta-lét đảo)

b, Do BM là phân giác ˆBB^ theo tính chất đường phân giác ta có:

AM/MC=AB/BC=5/6AM/MC=AB/BC=5/6

⇒AM/AM+MC=5/5+6⇒AM/AC=5/11⇒AM/AM+MC=55+6⇒AM/AC=511

⇒AM=5/11AC=25/11⇒AM=5/11AC=25/11 (cm)

⇒MC=AC−AM=30/11⇒MC=AC−AM=30/11 (cm)

MN//BC⇒MN/BC=AM/AC=5/11MN//BC⇒MNBC=AMAC=5/11

⇒MN=5/11BC=3011⇒MN=51/1BC=30/11 (cm).

imagerotate

image

image

17 tháng 3 2021

vào fun english ủng hộ mk nha

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có

góc B chung

=>ΔHBA đồng dạng với ΔABC

b: BC=căn 12^2+16^2=20cm

c: AD là phân giác

=>BD/CD=AB/AC=3/4

=>S ABD/S ACD=3/4

d: BD/CD=3/4

=>BD/3=CD/4

mà BD+CD=10

nên BD/3=CD/4=10/7

=>BD=30/7cm; CD=40/7cm

7 tháng 6 2019

Toán lớp 8 thì mik nghĩ bn vào lazi.vn hoặc hoc.24h.vn để hỏi nha 

~ Hok tốt ~
#JH

7 tháng 6 2019

a) 

Xét tam giác ABC ta có

\(AB^2+AC^2=BC^2\)(định lý py ta go)

144 + 256 = BC2

400 = BC2

BC = 20 ( cm )

Xét tam giác ABC có 

BD là đường phân giác của tam giác 

nên AD/DC = AB/BC = 16/20 = 4/5

có AD + DC = AC = 16 

dễ tìm ra AD = 64/9  (cm)

DC = 80/9 (cm)

b) xét 2 tam giác HBA và ABC

có góc ABC chung

2 góc AHB và CAB bằng nhau cùng bằng 90 độ

nên 2 tam giác HAB và ABC đồng dạng với nhau

c)

có 2 tam giác HAB và ABC đồng dạng với nhau

nên \(\frac{S_{HAB}}{S_{ABC}}=\left(\frac{AB}{BC}\right)^2=\left(\frac{12}{20}\right)^2=\frac{9}{25}\)

d)

có E là hình chiếu của của C trên BD

nên \(CE\perp BD\)

suy ra \(\widehat{BEC}=90^0\)

xét 2 tam giác BHK và BEC

có \(\widehat{BHK}=\widehat{BEC}=90^0\)

\(\widehat{CEB}\)chung

nên 2 tam giác BHK và BEC đồng dạng với nhau

suy ra \(\frac{BH}{BE}=\frac{BK}{BC}\Rightarrow BH\cdot BC=BK\cdot BE\)(1)

có 2 tam giác HAB và ABC đồng dạng với nhau

suy ra \(\frac{AB}{BC}=\frac{BH}{AB}\Rightarrow AB^2=BH\cdot BC\left(2\right)\)

từ (1) và (2) suy ra 

\(AB^2=BK\cdot BE\)

14 tháng 3 2022

`Answer:`

Sửa đề câu a.: Tính tỉ số diện tích hai tam giác ABD và tam giác ACD nhé.

C D H A B

a. `\triangleABD` và `\triangleACD` có chung đường cao hạ từ `A`

\(\Rightarrow\frac{S_{ABD}}{S_{ACD}}=\frac{BD}{CD}=\frac{AB}{AC}=\frac{12}{16}=\frac{3}{4}\)

b. Áp dụng định lý Pytago: `AB^2+AC^2=BC^2<=>12^2+16^2=BC^2<=>BC^2=400<=>BC=20cm`

c. Ta có: `BC=BD+CD=20cm`

Mà `\frac{BD}{CD}=3/4=>\frac{BD}{3}=\frac{CD}{4}=\frac{BD+CD}{3+4}=\frac{20}{7}`\(\Rightarrow\hept{\begin{cases}BD=\frac{60}{7}cm\\CD=\frac{80}{7}cm\end{cases}}\)

d. \(S_{ABC}=\frac{1}{2}.AB.AC=\frac{1}{2}.AH.BC\Rightarrow AH=\frac{12.16}{20}=9,6cm\)

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có

\(\widehat{B}\) chung

Do đó: ΔHBA đồng dạng với ΔABC

b: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC^2=12^2+16^2=400\)

=>\(BC=\sqrt{400}=20\left(cm\right)\)

c: Xét ΔABC có AD là phân giác

nên \(\dfrac{BD}{CD}=\dfrac{AB}{AC}=\dfrac{3}{4}\)

=>\(S_{ABD}=\dfrac{3}{4}\cdot S_{ACD}\)

d: Ta có: \(\dfrac{BD}{CD}=\dfrac{3}{4}\)

=>\(\dfrac{BD}{3}=\dfrac{CD}{4}\)

mà BD+CD=BC=20

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{20}{7}\)

=>\(BD=\dfrac{20}{7}\cdot3=\dfrac{60}{7}\left(cm\right);CD=\dfrac{20}{7}\cdot4=\dfrac{80}{7}\left(cm\right)\)

e: Xét ΔABC vuông tại A có AH là đường cao

nên \(AH\cdot BC=AB\cdot AC\)

=>\(AH\cdot20=12\cdot16=192\)

=>AH=192/20=9,6(cm)

7 tháng 5 2020

Mọi người ơi giúp em với ạ huhu 

8 tháng 5 2016

a/ Xét tg HBA và tg ABC, có:

góc BHA = góc BAC = 90 độ

góc B chung

Suyra: tg HBA đồng dạng với tg ABC (g-g)

b/ Ta có tg ABC vuông tại A:

\(BC^2=AC^2+AB^2\)

\(BC^2=8^2+6^2=100\)

\(\Rightarrow BC=\sqrt{100}=10\)(cm)

Ta có: \(\frac{HA}{AC}=\frac{BA}{BC}\)(tg HBA đồng dạng với tg ABC)

\(\Rightarrow\frac{HA}{8}=\frac{6}{10}\)

\(\Rightarrow HA=\frac{8.6}{10}=4,8\left(cm\right)\)

8 tháng 5 2017

Hình thì bạn tự vẽ nha

a)Xét tam giác ABC và tam giá HBA, có:

Góc B chung

Góc BAC = góc BHA 

--> Tam giác ABC ~ Tam giác HBA

b)Xét tam giác AHB và tam giác HCA, có

Góc A - góc H

Góc ABH = Góc AHC

-->tam giác AHB ~ tam giác AHC

-->AH/HB = HC/AH

-->AH.AH = HB.HC

-->AH^2=HB.HC(đpcm)

c)

+) Áp dụng định lý PTG vào tam giác vuông ABC, có :

BC^2=AB^2 + AC^2

<--> 6^2 + 8^2 = 100

--> BC = 10(cm)

+)Vì tam giác ABC ~ Tam giác HBA :

AB/HB = BC/BA = AC/HA

-)AB/HB = BC/BA

= 6/HB =10/6

--> HB = 6.6/10

-->HB = 3,6(cm)

-)BC/BA =AC/HA

=10/6 = 8/HA

--> HA = 6.8/10

--> HA = 4,8 (cm)

d) tính tỉ số diện tích thì bạn ghi tỉ số đồng dạng ra rồi bình phương tỉ số đó lên

là đc tỉ số đồng dạng ạ 

8 tháng 5 2017

xét tam giác ABC có BC2=ab2 + ac2

thay số BC2=62+82

BC2=36+64=100

BC=10(cm)

còn lại mình không bít,xin lỗi