K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
11 tháng 10 2015
Kẻ phân giác BD \(\Rightarrow\frac{AD}{CD}=\frac{AB}{BC}\Rightarrow\frac{AD}{AD+CD}=\frac{AB}{AB+BC}\Rightarrow\frac{AD}{AC}=\frac{AB}{AB+BC}\Rightarrow AD=\frac{bc}{a+c}\)
\(tan\frac{\alpha}{2}=\frac{AD}{AB}=\frac{\frac{bc}{a+c}}{c}=\frac{b}{a+c}\left(đpcm\right)\)
NT
25 tháng 7 2015
gọi BI là phân giác trong góc ABC của tam giác ABC theo tính chất đường phân giác trong , ta có:
\(\frac{AI}{AB}=\frac{CI}{BC}=\frac{AI+CI}{AB+BC}=\frac{AC}{AB+BC}\)
mặt khác:
tan\(\frac{gócABC}{2}=tan\) góc ABI=\(\frac{IA}{AB}\Rightarrow tan\frac{gócABC}{2}=\frac{AC}{AB+AC}\left(đpcm\right)\)
mk giải như vậy đúng ko?????????????????
kẻ phân giác BK của góc ABC ( K thuộc AC)
theo tính chất tia phân giác ta có:
\(\frac{AK}{AB}=\)\(\frac{KC}{BC}\)
áp dụng tính chất của tỉ lệ thức ta có:
\(\frac{AK}{AB}=\frac{KC}{BC}\) =\(\frac{AK+KC}{AB+BC}\) =\(\frac{AC}{AB+BC}\)
mà tan\(\frac{ABC}{2}\) = tan ABK = \(\frac{AK}{AB}\)
==> tanABK = tan \(\frac{ABC}{2}\)=\(\frac{AK}{AB}\)=\(\frac{AC}{AB+BC}\)(đpcm) Chúc bạn học tốt