Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐỀ BÀI THIẾU \(\widehat{BAC}=105^0\). Hình vẽ trong TKHĐ
Qua A kẻ đường thẳng vuông góc với AC cắt BC tại M. Tại E kẻ đường thẳng song song với AH cắt AC tại D.
Xét tam giác ABE có AB=BE=1 mà ^ABE=600 nên tam giác ABE đều. Khi đó
\(AH=AB\cdot\sin\widehat{ABH}=\sin60^0=\frac{\sqrt{3}}{2}\)
Dễ thấy \(\Delta MAE=\Delta ADE\left(g.c.g\right)\Rightarrow AD=AM\Rightarrow\Delta\)AMC vuông tại A có đường cao AH theo hệ thức lượng:
\(\frac{1}{AC^2}+\frac{1}{AM^2}=\frac{1}{AH^2}\Rightarrow\frac{1}{AC^2}+\frac{1}{AD^2}=\frac{1}{\left(\frac{\sqrt{3}}{2}\right)^2}=\frac{4}{3}\)
Gọi F đối xứng với C qua A. Khi đó tam giác FBC vuông tại F.
Theo hệ thức lượng thì \(BC^2=HC\cdot CF\). Mặt khác \(BC^2=2AB\cdot HC\)
Đến đây dễ rồi nha, làm tiếp thì chán quá :(
A B C M 60
Dùng kiến thức hình học 7 để chứng minh bài này như sau: Gọi AM là đứng trung tuyến ứng với cạnh huyền BC của tam giác vuông ABC ta có : AM = MB = MC = BC/2
Tam giác AMB có : MA = MB => tam giác AMB cân tại M. ta lại có góc B = 60 độ. => tam giác AMB đều
=> AB = MB = BC/2 (1 )
Áp dụng định lí Pytago cho tam giác vuông ABC ta có : \(AC^2=BC^2-AB^2\Rightarrow AC=\sqrt{BC^2-AB^2}=\sqrt{BC^2-\frac{BC^2}{4}}=\frac{BC\sqrt{3}}{2}.\)((2)
Từ (1) và (2 ) suy ra : \(\frac{AC}{AB}=\sqrt{3}\)
Chứng minh điều ngược lại: vì \(\frac{AC}{AB}=\sqrt{3}\Rightarrow AC=AB\sqrt{3}\)
Áp dụng định lí Pytago cho tam giác vuông ABC được : \(BC=\sqrt{AC^2+AB^2}=\sqrt{4AB^2}=2AB.\)
=> AB = BC/2 (3)
AM là đường trung tuyến ứng với cạnh huyền BC nên AM = MB = BC/2 (4)
Từ (3) và (4) => AB = AM = MB => tam giác AMB đều => góc B = 60 độ ( đpcm )