Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔCAD và ΔCED có
CA=CE
\(\widehat{ACD}=\widehat{ECD}\)
CD chung
Do đó: ΔCAD=ΔCED
b: Ta có:ΔCAD=ΔCED
=>\(\widehat{CAD}=\widehat{CED}\)
mà \(\widehat{CAD}=90^0\)
nên \(\widehat{CED}=90^0\)
=>DE\(\perp\)BC
c: ta có: ΔCAD=ΔCED
=>DA=DE
=>D nằm trên đường trung trực của AE(1)
ta có: CA=CE
=>C nằm trên đường trung trực của AE(2)
Từ (1) và (2) suy ra CD là đường trung trực của AE
d: Ta có: ΔACD vuông tại A
=>CD là cạnh lớn nhất trong ΔACD
=>CD>DA
Hình bạn tự vẽ nhé
a) Xét ΔABM và ΔACM có:
AB=AC (gt)
AM là cạnh chung
BM=CN (M là trung điểm của BC)
=> ΔABM=ΔACM (c-c-c)
=> \(\widehat{AMB}=\widehat{AMC}\) (2 góc tương ứng)
Mà ta có: \(\widehat{AMB}+\widehat{AMC}=90^o\)
=> \(\widehat{AMB}+\widehat{AMB}=180^o\)
=> \(\widehat{AMB}=90^o\)
=> AM vuông góc với BC
b) Theo câu a ta có: ΔABM=ΔACMB
=> \(\widehat{ABM}=\widehat{ACM}\)
Mà: \(\widehat{ABD}=180^o-\widehat{ABM}=180^o-\widehat{ACM}=\widehat{ACE}\)
Xét ΔABD và ΔACE có:
AB=AC (gt)
\(\widehat{ABD}=\widehat{ACE}\) (chứng minh trên)
BD=CE (gt)
=> ΔABD=ΔACE (c-g-c)
=> \(\widehat{BAD}=\widehat{CAE}\) (2 góc tương ứng)
Cũng theo câu a thì ΔABM=ΔACM
=> \(\widehat{BAM}=\widehat{CAM}\)
=> \(\widehat{BAM}+\widehat{BAD}=\widehat{CAM}+\widehat{CAE}\)
=> \(\widehat{DAM}=\widehat{EAM}\)
=> AM là tia phân giác của góc DAE
a/
Xét 2 tg vuông ACE và tg vuông DCE có
CE chung
\(\widehat{ACE}=\widehat{DCE}\) (gt)
=> tg ACE = tg DCE (Hai tg vuông có cạnh huyền và góc nhọn tương ứng bằng nhau)
\(\Rightarrow\widehat{AEC}=\widehat{DEC}\) => CE là phân giác \(\widehat{AED}\)
b/
Gọi M là giao của CE và AD
Ta có tg ACE = tg DCE (cmt) => AC=DC
Xét tg ACM và tg DCM có
AC=DC; CM chung
\(\widehat{ACM}=\widehat{DCM}\)
=> tg ACM = tg DCM (c.g.c) => MA=MD (1)
\(\Rightarrow\widehat{AMC}=\widehat{DMC}=\dfrac{\widehat{AMD}}{2}=\dfrac{180^o}{2}=90^o\)
\(\Rightarrow CE\perp AD\) (2)
Từ (1) và (2) => CE là đường trung trực của AD