K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Ta có: ΔABC vuông tại A(gt)

mà AM là đường trung tuyến ứng với cạnh huyền BC(M là trung điểm của BC)

nên \(AM=\dfrac{1}{2}BC\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)

 
1 tháng 5 2023

`@` `\text {dnv}`

`a,`

Xét `\Delta AMB` và `\Delta AMC`:

`\text {AB = AC} (\Delta ABC \text {cân tại A})`

`\hat {B} = \hat {C} (\Delta ABC \text {cân tại A})`

`\text {MB = MC (vì AM là đường trung tuyến)`

`=> \Delta AMB = \Delta AMC (c-g-c)`

`b,`

\(\text{Vì AM}\text{ }\cap\text{BN tại G}\)

\(\text{AM, BN đều là đường trung tuyến}\)

`->`\(\text{G là trọng tâm của }\Delta\text{ABC}\)

`@` Theo tính chất của trọng tâm trong tam giác

`->`\(\text{BG = }\dfrac{2}{3}\text{BN}\)

Mà `\text {BN = 15 cm}`

`->`\(\text{BG = }\dfrac{2}{3}\cdot15=\dfrac{15}{3}=5\text{ }\left(\text{cm}\right)\)

Vậy, độ dài của \(\text{BG là 5 cm}\).

`c,` Bạn xem lại đề!

loading...

12 tháng 5 2021

A B C M G N D

a) Xét \(\Delta ABC\) vuông tại A có: \(BC^2=AB^2+AC^2\)  (định lí Pytago)

\(\Rightarrow BC^2=225\Rightarrow BC=\sqrt{225}=15\left(cm\right)\)

Vậy \(BC=15cm\).

b) Xét \(\Delta ABC\) vuông tại A có AM là đường trung truyến

\(\Rightarrow AM=\frac{1}{2}BC\) (định lí)

\(\Rightarrow AM=\frac{1}{2}.15=7,5\)

Ta có: 2 đường trung truyến AM và BN cắt nhau tại G

\(\Rightarrow\)G là trọng tâm của \(\Delta ABC\)

\(\Rightarrow AG=\frac{2}{3}AM=\frac{2}{3}.7,5=5\left(cm\right)\)

Vậy \(AG=5cm\).

c) Xét \(\Delta ABN\) và \(\Delta CDN\) có:

BN = DN (gt)

\(\widehat{ANB}=\widehat{CND}\) (2 góc đối đỉnh)

AN = CN (vì N là trung điểm của AC)

\(\Rightarrow\Delta ABN=\Delta CDN\left(c.g.c\right)\)   (đpcm)