Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét t/giác ABM và t/giác HBM
có AB = BH (gt)
\(\widehat{ABM}=\widehat{HBM}\)(gt)
BM : chung
=> t/giác ABM = t/giác HBM (c.g.c)
b) Do t/giác ABM = t/giác HBM (cmt)
=> \(\widehat{BAM}=\widehat{BHM}=90^0\) (2 góc t/ứng)
=> HM \(\perp\)BC
c) Xét t/giác AMK và t/giác HMC
có \(\widehat{KAM}=\widehat{MHC}=90^0\)
AM = MJ (do t/giác ABM = t/giác HBM)
\(\widehat{AMK}=\widehat{HMC}\)(đối đỉnh)
=> t/giác ẠMK = t/giác HMC (g.c.g)
=> MK = MC (2 cạnh t/ứng)
=> t/giác KMC cân tại M
c) Ta có: BA + AK = BK
BH + HC = BC
mà AB = BH (gt); AK = HC(do t/giác ABM = t/giác HBM)
=> BK = BC => t/giác BKC cân tại B
=> \(\widehat{K}=\widehat{C}=\frac{180^0-\widehat{B}}{2}\) (2)
Ta có: AB = BH(gt) => t/giác BAH cân tại B
=> \(\widehat{BAH}=\widehat{BHA}=\frac{180^0-\widehat{B}}{2}\)(1)
Từ (1) và (2) => \(\widehat{K}=\widehat{BAH}\)
Mà 2 góc ở vị trí đồng vị => AH // KC
Diễn giải:
- Khi cộng, trừ số thập phân ta tiến hành cộng hoặc trừ các phần tương ứng của các số đó.
Ví dụ 1:
Tính 0,25 + 2,5 ta làm như sau: 5 + 0 = 5 , 2 + 5 =7, 0 + 2 = 2. Vậy 0,25 + 2,5 = 2.75
Tính 8,6 - 2,7 ta làm như sau: 6 - 7 không trừ được ta lấy 16 - 7 = 9, tiếp tục 8 - 2 trừ thêm 1 nữa tức là 8 -3 = 5. Vậy 8,6 - 2,7 = 5,9
- Với phép nhân, chia các số thập phân ta cần viết chúng dưới dạng phân số.
Diễn giải:
- Khi cộng, trừ số thập phân ta tiến hành cộng hoặc trừ các phần tương ứng của các số đó.
Ví dụ 1:
Tính 0,25 + 2,5 ta làm như sau: 5 + 0 = 5 , 2 + 5 =7, 0 + 2 = 2. Vậy 0,25 + 2,5 = 2.75
Tính 8,6 - 2,7 ta làm như sau: 6 - 7 không trừ được ta lấy 16 - 7 = 9, tiếp tục 8 - 2 trừ thêm 1 nữa tức là 8 -3 = 5. Vậy 8,6 - 2,7 = 5,9
- Với phép nhân, chia các số thập phân ta cần viết chúng dưới dạng phân số.
a: BC=căn 6^2+8^2=10cm
b: Xét ΔABM vuông tại A và ΔKBM vuông tại K có
BM chung
góc ABM=góc KBM
=>ΔBAM=ΔBKM
c: AM=MK
MK<MC
=>AM<MC
d: Xét ΔMAD vuông tại A và ΔMKC vuông tại K có
MA=MK
góc AMD=góc KMC
=>ΔMAD=ΔMKC
=>AD=KC
Xét ΔBDC có BA/AD=BK/KC
nên AK//DC
a) Xét 2 tam giác vuông: \(\Delta ABM\) và \(\Delta EBM\) có:
\(\widehat{ABM}=\widehat{EBM}\)(gt)
\(BM:\) CHUNG
suy ra: \(\Delta ABM=\Delta EBM\) (CH_GN)
b) \(\Delta ABM=\Delta EBM\)
\(\Rightarrow\)\(AB=EB\) => B thuộc trung trực AE
\(MA=ME\) => M thuộc trung tính AE
suy ra: BM là trung trực AE
c) \(\Delta EMC\) vuông tại E
=> \(EM< MC\)
mà \(EM=AM\)
\(\Rightarrow\)\(AM< MC\)