Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
neu ai tra loi dung cho minh trong may tieng nay to k cho1 nink
\(\Delta ABC\)vuông tại A có \(sinB=\frac{\sqrt{3}}{2}\Rightarrow\widehat{B}=60^0\)
\(\Rightarrow\widehat{C}=30^0\)
Lúc đó \(\Delta ABC\)là nửa tam giác đều
\(\Rightarrow AB=\frac{1}{2}BC\Rightarrow BC=2AB=2\left(cm\right)\)
Áp dụng định lý Py-ta-go vào \(\Delta ABC\)vuông tại A, được:
\(AC^2=BC^2-AB^2=2^2-1^2=3\)
\(\Rightarrow AC=\sqrt{3}\left(cm\right)\)
Áp dụng ht lượng trong tam giác vuông có :
\(sinB=\frac{AC}{BC}\Leftrightarrow\frac{\sqrt{3}}{2}=\frac{AC}{BC}\Leftrightarrow AC=\frac{BC\sqrt{3}}{2}\)
Áp dụng đinh lí Py-ta- go vào tam giác vuông ABC có :
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow1+\left(\frac{\sqrt{3}BC}{2}\right)^2=BC^2\)
\(\Leftrightarrow1+\frac{3BC^2}{4}-BC^2=0\)
\(\Leftrightarrow1=\frac{BC^2}{4}\Leftrightarrow BC^2=4\Rightarrow BC=2\left(cm\right)\)
\(\Rightarrow AC=\sqrt{3}\left(cm\right)\)
Chúc bạn học tốt !!!
Bài 2:
Gọi tam giác cần có trong đề là ΔABC vuông tại A có \(\widehat{B}=\alpha\)
Ta có: \(\tan^2B+1=\left(\dfrac{AC}{AB}\right)^2+1=\dfrac{AC^2+AB^2}{AB^2}=\dfrac{BC^2}{AB^2}\)
\(\Leftrightarrow\tan^2B+1=1:\dfrac{AB^2}{BC^2}=\dfrac{1}{\cos^2B}\)(đpcm)
\(\cos C=\dfrac{4}{5}\)
B A C
Có : Sin B = \(\dfrac{4}{5}\) => \(\widehat{B}\) = sin-1 \(\dfrac{4}{5}\) (cái này có thể bấm máy tính)
\(\approx\) \(53^o\)
Có : \(\widehat{C}\) = \(180^o-90^o-53^o=37^o\)
=> cos C = cos \(37^o\) \(\approx\) 0.7986