K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2023

Tam giác ABC vuông tại A áp dụng đính lý cạnh góc vuông và hình chiếu ta có::

\(AB^2=BC\cdot HB=BC\cdot\left(BC-HC\right)\)

\(\Rightarrow20^2=BC^2-BC\cdot9\)

\(\Rightarrow BC^2-9BC-400=0\)

\(\Rightarrow BC^2+16BC-25BC-400=0\)

\(\Rightarrow BC\left(BC+16\right)-25\left(BC+16\right)=0\)

\(\Rightarrow\left(BC+16\right)\left(BC-25\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}BC+16=0\\BC-25=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}BC=-16\left(ktm\right)\\BC=25\left(tm\right)\end{matrix}\right.\)

Áp dụng hệ thức đường cao và hình chiếu ta có:

\(AH^2=HC\cdot HB\Rightarrow AH=\sqrt{HC\cdot\left(BC-HC\right)}\)

\(\Rightarrow AH=\sqrt{9\cdot\left(25-9\right)}=12\left(cm\right)\)

Diện tích của tam giác ABC là:
\(S_{ABC}=\dfrac{1}{2}\cdot BC\cdot AH=\dfrac{1}{2}\cdot25\cdot12=150\left(cm^2\right)\)

19 tháng 8 2020

Kẻ đường cao AH (H thuộc BC) => BH/CH=9/16

=> BH=[5:(9+16)]x9=1,8 cm => CH=5-1,8=3,2 cm

\(AH^2=BH.CH=1,8.3,2=5,76\Rightarrow AH=2,4cm\)

\(S_{ABC}=\frac{BC.AH}{2}=\frac{5.2,4}{2}=6cm^2\)

1/ cho tam giác ABC vuông tại A , có đường cao AH , phân giác AD biết BD=15cm Dc=20cm Tính AH,AD làm tròn đến chữ số thập phân thứ 2 2/cho tam giác ABC vuông tại A ,đường cao AH ,Trung tuyến AM a) Biết BC=125cm , AB phần AC = 3 phần 4 Tính độ dài hình chiếu của mỗi cạnh góc vuông trên cạnh huyền b) Biết AH=42cm , AB:AC=3:7 .Tính độ dài hình chiếu của mỗi cạnh góc vuông trên cạnh huyền c) Biết AH=48cm...
Đọc tiếp

1/ cho tam giác ABC vuông tại A , có đường cao AH , phân giác AD biết BD=15cm Dc=20cm 
Tính AH,AD làm tròn đến chữ số thập phân thứ 2 
2/cho tam giác ABC vuông tại A ,đường cao AH ,Trung tuyến AM 
a) Biết BC=125cm , AB phần AC = 3 phần 4 Tính độ dài hình chiếu của mỗi cạnh góc vuông trên cạnh huyền 
b) Biết AH=42cm , AB:AC=3:7 .Tính độ dài hình chiếu của mỗi cạnh góc vuông trên cạnh huyền 
c) Biết AH=48cm , HB:HC=9:16 tính AB,AC,BC 
d) Biết AH:AM=40:41 Tính tỉ số AB phần Ac 
3/Hình thang ABCD có AB//CD và hai đường chéo vuông góc . Biết BD=15cm và dường cao hình thang bằng 12cm .Tính diện tích hình thang ABCD 

4/Cho tam giác ABC cân tại A có đường cao AH=32cm đường cao BK=38,4 cm 
a) tính các cạnh của tam giác ABC 
b) đường trung trục của AC cắt AH tai O tính OH

0
9 tháng 9 2018

Bài 1 

a) \(BC=125\Rightarrow BC^2=15625\)

\(\frac{AB}{AC}=\frac{3}{4}\Rightarrow\frac{AB}{3}=\frac{AC}{4}\)từ đây ta có \(\frac{AB^2}{9}=\frac{AC^2}{16}\)

Áp dụng t/c dãy tỉ số bằng nhau ta có

\(\frac{AB^2}{9}=\frac{AC^2}{16}=\frac{AB^2+AC^2}{25}=\frac{BC^2}{25}=\frac{15625}{25}=625\)

\(\frac{AB^2}{9}=625\Rightarrow AB=75\)

\(\frac{AC^2}{16}=625\Rightarrow AC=100\)

Áp dụng hệ thức lượng trong tam giác vuông ta có 

\(AB^2=BH\cdot BC\Rightarrow BH=\frac{AB^2}{BC}=\frac{5625}{125}=45\)

\(AC^2=CH\cdot BC\Rightarrow CH=\frac{AC^2}{BC}=\frac{10000}{125}=80\)

b.c) làm tương tự cũng áp dụng HTL trong tam giác vuông

Bài 2

Hình bạn tự vẽ

Ta có \(EH\\ AC\left(EH\perp AB;AC\perp AB\right)\Rightarrow\frac{BE}{AB}=\frac{BH}{BC}\Rightarrow BE=\frac{AB\cdot BH}{BC}\Rightarrow BE^2=\frac{AB^2\cdot BH^2}{BC^2}\)

\(\Leftrightarrow BE^2=\frac{BH\cdot BC\cdot BH^2}{BC^2}=BH^3\)

Bài 3 Đề bài này không đủ dữ kiện tính S của ABC

12 tháng 9 2018

Cám ơn cậu nhaaaaa

Cho một tam giác ABC vuông tại A có \(\widehat{B}=\dfrac{1}{2}\widehat{C}\). Kẻ đường cao AH sao cho cạnh AH vuông góc với cạnh huyền BC tại H. Các hình chiếu của AB và AC trên BC lần lượt là BH và HC. Biết HC = 1,6cm. a) Tính góc B và C, và các tỉ số lượng giác của chúng nó. b*) Tính độ dài các cạnh BC, AB và AC. Gợi ý: Sử dụng các hệ thức về tỉ số lượng giác của góc nhọn và một trong bốn...
Đọc tiếp

Cho một tam giác ABC vuông tại A có \(\widehat{B}=\dfrac{1}{2}\widehat{C}\). Kẻ đường cao AH sao cho cạnh AH vuông góc với cạnh huyền BC tại H. Các hình chiếu của AB và AC trên BC lần lượt là BH và HC. Biết HC = 1,6cm.

a) Tính góc B và C, và các tỉ số lượng giác của chúng nó.

b*) Tính độ dài các cạnh BC, AB và AC.

Gợi ý: Sử dụng các hệ thức về tỉ số lượng giác của góc nhọn và một trong bốn hệ thức về cạnh góc vuông và đường cao trong tam giác vuông để tính.

c) Tính độ dài các cạnh AH và BH.

d) Hãy chứng minh rằng: Cả ba tam giác vuông ABC, HBA và HAC đồng dạng với nhau.

e*) Chứng minh rằng: \(\dfrac{\sin\widehat{HAC}}{\cos\widehat{HBA}}\div\dfrac{\tan\widehat{HAC}}{\cot\widehat{ABC}}=\dfrac{csc^2\widehat{ABC}}{sec^2\widehat{ABC}\cdot\cot\widehat{HBA}}\)

Gợi ý:

1. Secant - sec α nghịch đảo với cos α

2. Cosecant - csc α nghịch đảo với sin α

0
23 tháng 8 2021

giúp em với ạ.Em cảm ơn nhiềuu

 

b: Ta có: BC=BH+HC

nên BC=4+9

hay BC=13cm

Áp dụng hệ thức lượng trong tam giác vuông vào ΔBAC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=2\sqrt{13}cm\\AC=3\sqrt{13}cm\end{matrix}\right.\)

Xét ΔBAC vuông tại A có 

\(\sin\widehat{ABC}=\dfrac{AC}{BC}=\dfrac{3\sqrt{13}}{13}\)

\(\cos\widehat{ABC}=\dfrac{AB}{BC}=\dfrac{2\sqrt{13}}{13}\)

\(\tan\widehat{ABC}=\dfrac{AC}{AB}=\dfrac{3}{2}\)

\(\cot\widehat{ABC}=\dfrac{AB}{AC}=\dfrac{2}{3}\)

b: Áp dụng hệ thức lượng trong tam giác vuông vào ΔBAC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=2\sqrt{13}cm\\AC=3\sqrt{13}cm\end{matrix}\right.\)

Xét ΔBAC vuông tại A có 

\(\sin\widehat{ABC}=\dfrac{AC}{BC}=\dfrac{3\sqrt{13}}{13}\)

\(\cos\widehat{ABC}=\dfrac{AB}{BC}=\dfrac{2\sqrt{13}}{13}\)

\(\tan\widehat{ABC}=\dfrac{AC}{AB}=\dfrac{3}{2}\)

\(\cot\widehat{ABC}=\dfrac{AB}{AC}=\dfrac{2}{3}\)