Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác ABC cân tại A: M là trung điểm của BC(gt)
=> AM là trung tuyến
Xét tam giác ABC cân tại A: AM là trung tuyến (cmt)
=> AM là đường cao (TC các đường trong tam giác cân)
Xét tam giác EBC: EM là trung tuyến (AM là trung tuyến, E thuộc AM)
EM là đường cao (AM là đường cao, E thuộc AM)
=> Tam giác EBC cân tại E
M là trung điểm của BC (gt) => BM = \(\dfrac{BC}{2}=\dfrac{12}{2}=6\left(cm\right)\)
Xét tam giác AMB vuông tại M (AM \(\perp BM\))
AB2 = AM2 + BM2 (định lý Py ta go)
Thay số: AB2 = 82 + 62
<=> AB2 = 100
<=> AB = 10 (cm)
Vậy AB = 10 (cm)
Bài 1:
Xét ∆ABC vuông tại A, AH \(\perp\) BC:
Ta có: AH2 = BH . HC (hệ thức lượng)
<=> 122 = 9 . HC
<=> HC = \(\dfrac{12^2}{9^{ }}=\dfrac{144}{9}=16\left(cm\right)\)
Vậy HC = 16 (cm)
Ta có: BC = BH + HC = 9 + 16 = 25 (cm)
Xét ∆ABC vuông tại A, AH \(\perp\) BC:
Ta có: AB2 = BH . BC (hệ thức lượng)
<=> AB2 = 9 . 25
<=> AB2 = 225
<=> AB = 15 (cm)
Vậy AB = 15 (cm)
\(\Delta ABC\)vuông tại \(A\Leftrightarrow AB^2+AC^2=BC^2=400\)
\(4AB=3AC\Leftrightarrow\frac{AB}{3}=\frac{AC}{4}\Leftrightarrow\frac{AB^2}{9}=\frac{AC^2}{16}\)
áp dụng tính chất dãy tỉ số bằng nhau ta có: \(\frac{AB^2}{9}=\frac{AC^2}{16}=\frac{AB^2+AC^2}{9+16}=\frac{400}{25}=16\)
\(\Rightarrow\hept{\begin{cases}AB^2=9.16=144\Leftrightarrow AB=12\\AC^2=16.16\Leftrightarrow AC=16\end{cases}}\)
△ABC vuông tại A có \(BC^2=AB^2+AC^2\\ \Rightarrow BC=\sqrt{15^2+20^2}=25\left(cm\right)\)
\(\Rightarrow CH=BC-BH=25-9=16\left(cm\right)\)
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=15^2+20^2=625\)
hay BC=25(cm)
Ta có: BH+CH=BC(H nằm giữa B và C)
nên CH=BC-BH=25-9=16(cm)
Vậy: CH=16cm
Áp dụng định lý \(Pi-ta -go \) và tam giác vuông \(ABC\) ta có :
\(AB^2+AC^2=BC^2\Rightarrow BC=\sqrt{AB^2+AC^2}\)
\(=\sqrt{20^2+25^2}=5\sqrt{41}\) \(\left(cm\right)\)
Chu vi \(\Delta ABC\) là :\(AB+AC+BC=20+25+5\sqrt{41}=45+5\sqrt{41}\left(cm\right)\)
\(4AB=3AC\Rightarrow\frac{AB}{3}=\frac{AC}{4}\Rightarrow\frac{AB^2}{9}=\frac{AC^2}{16}\)
Áp dụng tính chất của dãy tỉ số bằng nhau và định lý pytago ta có:
\(\frac{AB^2}{9}=\frac{AC^2}{16}=\frac{AB^2+AC^2}{9+16}=\frac{BC^2}{25}=\frac{400}{25}=16\)
\(\Rightarrow\frac{AB^2}{9}=16\Rightarrow AB^2=144\Rightarrow AB=12\left(cm\right)\)
\(\frac{AC^2}{16}=16\Rightarrow AC^2=16^2\Rightarrow AC=16\left(cm\right)\)
Áp dụng định lý Py-ta-go cho tam giác ABC vuông tại A,ta có:
BC2=AB2+CA2
<=>400=AB2+CA2
Theo giả thiết: 4AB=3AC
=>AB3=AC4
=>AB29=AC216
Theo tính chất dãy tỉ số bằng nhau,ta có:
AB29=AC216=AB2+AC29+16=BC225=40025=16
Với AB29=16=>AB=12
Với AC216=16=>AC=16
Vậy AB=12cm
AC=16cm
Xét tg ABC vuông tại A, có:
a. \(BC^2=AB^2+AC^2\left(Pytago\right)\)
\(=>BC=\sqrt{AB^2+AC^2}=\sqrt{\left(\sqrt{8}\right)^2+\left(\sqrt{17}\right)^2}=5\left(cm\right)\)
b. \(BC^2=AB^2+AC^2\left(Pytago\right)\)
\(=>BC=\sqrt{AB^2+AC^2}=\sqrt{\left(\dfrac{3}{5}\right)^2+\left(\dfrac{4}{5}\right)^2}=1\left(cm\right)\)
a, Xét Tam giác ABC vuôgn tại A
Theo định lí Pi-ta-go, ta có:
\(AB^2+AC^2=BC^2\)
Hay \(\sqrt{8}+\sqrt{17}=\sqrt{25}=5\left(cm\right)\)
Vậy BC = 5 (cm)
b, Xét tam giác ABC vuôgn tại A
THeo định lí Pi-ta-go, ta có :
\(AB^2+AC^2=BC^2\)
hay \(\left(\dfrac{3}{5}\right)^2+\left(\dfrac{4}{5}\right)^2=\sqrt{\dfrac{9}{25}+\dfrac{16}{25}=1}\)
Vậy BC = 1cm
help me
\(\frac{AB}{AC}=\frac{3}{4}\Rightarrow\frac{AB^2}{AC^2}=\frac{9}{16}\)(1)
Ta có: \(AB^2+AC^2=BC^2\left(=20^2=400\right)\)(Theo định lý Py - ta - go) (2)
Từ (1) và (2) suy ra \(AB^2=\frac{400}{16+9}.9=144\Rightarrow AB=\sqrt{144}=12\)
và\(AC^2=\frac{400}{16+9}.16=256\Rightarrow AC=\sqrt{256}=16\)
Vậy AB = 12, AC = 16