K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 12 2017

không biết

20 tháng 12 2019

Hoang ơi! Bạn rảnh vừa phải thôi

AH
Akai Haruma
Giáo viên
4 tháng 1 2021

ĐIểm $M$ là điểm nào thế bạn? 

 

10 tháng 9 2018

Bạn tham khảo bài làm của bạn Nguyễn Võ Thảo Vy phía dưới nhé:

Câu hỏi của Nguyễn Desmond - Toán lớp 8 - Học toán với OnlineMath

17 tháng 6 2016

Hình tự túc, bùn ngủ => ko vẽ nữa.

a) Ta có: AC _|_ AB ; HE _|_ AB =>  AC // HE

=> FHA^ = EAH^ (sole trong)

    FAH^ = EHA^ (sole trong)

Xét \(\Delta\)FAH và \(\Delta\)EHA :

FHA^ = EAH^ 

AH chung

FAH^ = EHA^ 

=> \(\Delta\)FAH = \(\Delta\)EHA (g.c.g)

=> FA = EH (2 cạnh tương ứng)

Xét \(\Delta\)FAE và \(\Delta\)HEA:

FAE^ = HEA^ =90o

FA = EH (cmt)

AE chung

=> \(\Delta\)FAE = \(\Delta\)HEA (2 cạnh góc vuông)

=> FE = HA (2 cạnh tương ứng)

b) Bn ơi, chữ EI hơi lạ. Xem lại nhé.

10 tháng 9 2018

Bạn xem bài làm ở đây:

Câu hỏi của Nguyễn Desmond - Toán lớp 8 - Học toán với OnlineMath

31 tháng 12 2021

Answer:

Bạn xem hình mình gửi nhé! Nếu hình bị lỗi thì nhắn cho mình ạ.

undefined

10 tháng 11 2021

a, Vì \(\widehat{AEH}=\widehat{ADH}=\widehat{DAE}=90^0\) nên AEHD là hcn

Do đó AH=DE

b, Vì \(\widehat{HAB}=\widehat{MCA}\) (cùng phụ \(\widehat{CAH}\))

Mà \(\widehat{MCA}=\widehat{MAC}\) (do \(AM=CM=\dfrac{1}{2}BC\) theo tc trung tuyến ứng ch)

Vậy \(\widehat{HAB}=\widehat{MAC}\)

c, Gọi O là giao AM và DE

Vì AEHD là hcn nên \(\widehat{HAB}=\widehat{ADE}\Rightarrow\widehat{MAC}=\widehat{ADE}\)

Mà \(\widehat{ADE}+\widehat{AED}=90^0\left(\Delta AED\perp A\right)\) nên \(\widehat{MAC}+\widehat{ADE}=90^0\)

Xét tam giác AOE có \(\widehat{AOE}=180^0-\left(\widehat{MAC}+\widehat{ADE}\right)=90^0\)

Vậy AM⊥DE tại O