Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xet ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
=>ΔABC đồng dạng với ΔHBA
b: ΔBCA vuông tại A có AH vuông góc BC
nên AH^2=HB*CH
c: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
AH=6*8/10=4,8cm
Bài 1 :
a, Xét tam giác BDA và tam giác KDC có:
Góc BDA= Góc KDC(đối đỉnh)
Góc B= Góc K(90 độ)
=>Tam giác BDA đồng dạng với tam giác KDC(g.g)
b,
Tam giác BDA đồng dạng với tam giác KDC ( cmt) => \(\frac{DB}{DA}=\frac{DK}{DC}\)
Xét tam giác DBK và tam giác DAC có:
Góc BDK= Góc DAC(đối đỉnh)
\(\frac{DB}{DA}=\frac{DK}{DC}\)
=>Tam giác DBK đồng dạng với tam giác DAC(c.g.c)
Bài 2 :
a) Xét tam giác ABH và tam giác AHD có:
\(\widehat{A}chung\)
\(\widehat{AHB}=\widehat{ADH}=90^o\)
⇒ tam giác ABH đồng dạng với tam giác AHD (g-g)
b)T/tự: tam giác AHC đồng dạng với tam giác AEH (g-g)
⇒ \(\widehat{ACH}=\widehat{AHE}\) ( 2 góc tương ứng)
Tam giác AEH đồng dạng với tam giác HEC
\(\widehat{ACH}=\widehat{AHE}\) (CM trên)
và \(\widehat{AEH}=\widehat{HEC}\) (= 900)
⇒\(\frac{AE}{HE}=\frac{EH}{EC}\)⇒\(AE\cdot EC=EH\cdot EH=EH^2\)
c) tam giác ADC đồng dạng với tam giác ABE (g-g) vì:
\(\widehat{A}\) chung
\(\widehat{ADC}=\widehat{AEB}=90^O\)
⇒ \(\widehat{ACD}=\widehat{ABE}\) ( 2 góc tương ứng)
Xét tam giác DBM và tam giác ECM có:
\(\widehat{ACD}=\widehat{ABE}\) (CM trên)
\(\widehat{DMB}=\widehat{EMC}\) (đối đỉnh)
⇒ tam giác DBM đồng dạng với tam giác ECM (g-g)
Bài 3 :
Bạn tự vẽ hình rồi đối chiếu kq nhé, có thể có sai sót đấy, ko chắc đúng hết đâu
a: \(CB=\sqrt{9^2+12^2}=15\left(cm\right)\)
ADlà phân giác
=>BD/AB=CD/AC
=>BD/3=CD/4=(BD+CD)/(3+4)=15/7
=>BD=45/7cm; CD=60/7cm
b: Xét ΔABH vuông tại H và ΔCDE vuông tại E có
góc HAB=góc ECD
=>ΔABH đồng dạng với ΔCDE
a, Xét tam giác EHA và tam giác HBA ta có ;
^HEA = ^BHA = 900
^A _ chung
Vậy tam giác EHA ~ tam giác HBA ( g.g ) (1)
Xét tam giác HBA và tam giác BCA ta có :
^BHA = ^CAB = 900
^A _ chung
Vậy tam giác HBA ~ tam giác BCA ( g.g ) (2)
Từ (1) ; (2) suy ra : tam giác EHA ~ tam giác ACB
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
=>ΔABC đồng dạng với ΔHBA
b: BC=căn 6^2+8^2=10cm
HA=6*8/10=4,8cm
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
=>ΔHBA đồng dạng với ΔABC
=>BH/BA=BA/BC
=>BA^2=BH*BC
b: BC=căn 9^2+12^2=15cm
AH=9*12/15=7,2cm
a, Xét tam giác ECD và tam giác ACB ta có
^CED = ^CAB = 900
^C _ chung
Vậy tam giác ECD ~ tam giác ACB ( g.g )
b, Áp dụng định lí Pytago ta có :
\(AB^2+AC^2=BC^2\Rightarrow AC^2=BC^2-AB^2=100-36=64\Rightarrow AC=8\)cm
Do BD là đường phân giác ^B
\(\Rightarrow\dfrac{AB}{BC}=\dfrac{AD}{DC}\) mà \(DC=AC-AD=8-AD\)
\(\Rightarrow\dfrac{6}{10}=\dfrac{AD}{8-AD}\Rightarrow48-6AD=10AD\Rightarrow16AD=48\Rightarrow AD=3\)cm
Vậy AD = 3 cm
c, Ta có : \(\dfrac{S_{ECD}}{S_{ACB}}=\dfrac{\dfrac{1}{2}ED.EC}{\dfrac{1}{2}AC.AB}=\dfrac{ED.EC}{6.8}=\dfrac{ED.EC}{48}\)(*)
\(\dfrac{EC}{AC}=\dfrac{ED}{AB}=\dfrac{CD}{BC}\)( tỉ số đồng dạng ý a )
\(\Rightarrow\dfrac{EC}{8}=\dfrac{5}{10}\)( CD = AC - AD = 8 - 3 = 5 cm )
\(\Rightarrow EC=\dfrac{40}{10}=4\) cm (1)
\(\Rightarrow\dfrac{ED}{AB}=\dfrac{CD}{BC}\Rightarrow ED=\dfrac{AB.CD}{BC}=\dfrac{6.5}{10}=3\)cm (2)
Thay (1) ; (2) vào (*) ta được :
\(\dfrac{S_{ECD}}{S_{ACB}}=\dfrac{3.4}{48}=\dfrac{12}{48}=\dfrac{1}{4}\)