Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng định lí Pi-ta-go vào tam giác vuông ABC, ta có:
B C 2 = A B 2 + A C 2 = 21 2 + 28 2 = 1225
Suy ra: BC = 35 (cm)
Vì AD là đường phân giác của ∠ (BAC) nên:
(t/chất đường phân giác)
Suy ra:
Hay
Suy ra:
Vậy DC = BC – BD = 35 – 15 = 20cm
Trong ΔABC ta có: DE // AB
Suy ra: (Hệ quả định lí Ta-lét)
Suy ra:
Áp dụng định lí Pi-ta-go vào tam giác vuông ABC, ta có:
BC2=AB2+AC2=212+282=1225BC2=AB2+AC2=212+282=1225
Suy ra: BC = 35 (cm)
Vì AD là đường phân giác của ∠∠(BAC) nên:
(t/chất đường phân giác)
Suy ra:
Hay
Suy ra:
Vậy DC = BC – BD = 35 – 15 = 20cm
Trong ΔABC ta có: DE // AB
Suy ra: (Hệ quả định lí Ta-lét)
Suy ra:
a: BC=35(cm)
Xét ΔABC có AD là đường phân giác
nên BD/AB=CD/AC
hay BD/21=CD/28
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BD}{21}=\dfrac{CD}{28}=\dfrac{BD+CD}{21+28}=\dfrac{35}{49}=\dfrac{5}{7}\)
Do đó: BD=15(cm); CD=20(cm)
Xét ΔABC có ED//AB
nên ED/AB=CD/CB
=>ED/21=20/35=4/7
=>ED=12(cm)
Ta có: S A B C = 1/2.AB.AC = 1/2.21.28 = 294 ( c m 2 )
Vì △ ABC và △ ADB có chung đường cao kẻ từ đỉnh A nên:
Vậy S A D C = S A B C - S A B D = 294 – 126 = 168( c m 2 )
a) Theo t/c đường phân giác, có:
\(\dfrac{DB}{AB}=\dfrac{DC}{AC}\)
hay \(\dfrac{DB}{21}=\dfrac{DC}{28}=\dfrac{DB+DC}{49}=\dfrac{BC}{49}\)\(=\dfrac{\sqrt{21^2+28^2}}{49}=\dfrac{35}{49}=\dfrac{5}{7}\)
\(\Rightarrow DB=\dfrac{5}{7}.21=15\left(cm\right)\)\(;DC=\dfrac{5}{7}.28=20\left(cm\right)\)
Có: DE//AB
\(\Rightarrow\Delta_vCDE\sim\Delta_vCBA\left(gn\right)\)
\(\Rightarrow\dfrac{DE}{AB}=\dfrac{DC}{BC}=\dfrac{20}{35}=\dfrac{4}{7}\)
\(\Rightarrow DE=\dfrac{4}{7}.21=12\left(cm\right)\)
b) Kẻ AK \(\perp BC\)
Có: \(\dfrac{S_{ABD}}{S_{ACD}}=\dfrac{\dfrac{1}{2}AK.BD}{\dfrac{1}{2}AK.CD}\)\(\dfrac{DB}{CD}=\dfrac{15}{20}=\dfrac{3}{4}\)
a, xét tam giác ABC vuông tại A (gt)
=>AB^2 + AC^2 = BC^2 (đl Pytago)
có AB = 21; AC = 28 (gt)
=> BC^2 = 21^2 + 28^2
=> BC^2 =1225
=> BC = 35 do BC > 0
xét tam giác ABC có AD là pg (gt)
=> BD/AB = DC/AC (tc)
=> (BD + DC)/(AB + AC) = BD/AB = DC/AC
có : AB = 21; AC = 28; BC = BD + DC = 35
=> 35/49 = BD/21 = DC/28
=> DB = 15 và DC = 20
xét tam giác ABC có DE // AB
=> ED/AB = CD/CB (hệ quả)
thay số vào tính được ED
thank you bạn