\(\frac{\sqrt{3}}{2}\) Tính AC, BC

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 11 2019

\(\Delta ABC\)vuông tại A có \(sinB=\frac{\sqrt{3}}{2}\Rightarrow\widehat{B}=60^0\)

\(\Rightarrow\widehat{C}=30^0\)

Lúc đó \(\Delta ABC\)là nửa tam giác đều 

\(\Rightarrow AB=\frac{1}{2}BC\Rightarrow BC=2AB=2\left(cm\right)\)

Áp dụng định lý Py-ta-go vào \(\Delta ABC\)vuông tại A, được:

\(AC^2=BC^2-AB^2=2^2-1^2=3\)

\(\Rightarrow AC=\sqrt{3}\left(cm\right)\)

5 tháng 11 2019

Áp dụng ht lượng trong tam giác vuông có :
\(sinB=\frac{AC}{BC}\Leftrightarrow\frac{\sqrt{3}}{2}=\frac{AC}{BC}\Leftrightarrow AC=\frac{BC\sqrt{3}}{2}\)

Áp dụng đinh lí Py-ta- go vào tam giác vuông ABC có :

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow1+\left(\frac{\sqrt{3}BC}{2}\right)^2=BC^2\)

\(\Leftrightarrow1+\frac{3BC^2}{4}-BC^2=0\)

\(\Leftrightarrow1=\frac{BC^2}{4}\Leftrightarrow BC^2=4\Rightarrow BC=2\left(cm\right)\)

\(\Rightarrow AC=\sqrt{3}\left(cm\right)\)

Chúc bạn học tốt !!!

3 tháng 11 2019

C1:

Áp dụng ht lượng trong tam giác vuông có:

\(sinB=\frac{AC}{BC}\) <=>\(\frac{\sqrt{3}}{2}=\frac{AC}{BC}\) <=>\(AC=\frac{BC\sqrt{3}}{2}\)

Áp dụng đ/lý py-ta-go vào tam giác vuông ABC có:

\(AB^2+AC^2=BC^2\)

<=>\(1+\left(\frac{\sqrt{3}BC}{2}\right)^2=BC^2\)

<=>\(1+\frac{3BC^2}{4}-BC^2=0\)

<=>\(1=\frac{BC^2}{4}\) <=> \(BC^2=4\) =>BC=2(cm)

=>AC=\(\sqrt{3}\)(cm)

C2:

Có : \(sin^2B+cosB^2=1\)

<=>\(cosB^2=1-sin^2B=1-\left(\frac{\sqrt{3}}{2}\right)^2=\frac{1}{4}\)

=> \(cosB=\frac{1}{2}\)

Áp dụng ht lượng trong tam giác vuông ABC có:

\(cosB=\frac{AB}{BC}\) => \(BC=\frac{AB}{cosB}=\frac{1}{\frac{1}{2}}=2\)( cm)

Áp dụng đ/lý py-ta- go vào tam giác vuông ABC có:

\(AC^2=BC^2-AB^2=2^2-1=3\)

=> \(AC=\sqrt{3}\left(cm\right)\)

22 tháng 10 2019

Bạn tự vẽ hình nha thông cảm !

Ta có : \(\sin\left(C\right)=\cos\left(B\right)\)(hai góc B và góc C phụ nhau)

Ta có : \(\frac{\sin\left(B\right)}{\sin\left(C\right)}=\frac{4}{5}\)(giả thiết)

\(\Leftrightarrow\frac{\sin\left(B\right)}{\cos\left(B\right)}=\frac{4}{5}\)

Mà ta có : \(\tan\left(B\right)=\frac{\sin\left(B\right)}{\cos\left(B\right)}\)\(\tan\left(B\right)=\frac{AC}{AB}\)

\(\Leftrightarrow\tan\left(B\right)=\frac{4}{5}\)

\(\Leftrightarrow\frac{AC}{AB}=\frac{4}{5}\)

\(\Leftrightarrow\left(\frac{AC}{AB}\right)^2=\left(\frac{4}{5}\right)^2\)

\(\Leftrightarrow\frac{AC^2}{AB^2}=\frac{16}{25}\)

\(\Leftrightarrow\frac{AC^2}{16}=\frac{AB^2}{25}\)

Theo đ/l Py-ta-go ta có :

\(AB^2+AC^2=BC^2\)

Hay:\(AB^2+AC^2=\left(2\sqrt{41}\right)^2\)

\(\Leftrightarrow AB^2+AC^2=164\)

Theo tính chất dãy tỉ số bằng nhau ta có :

\(\frac{AC^2}{16}=\frac{AB^2}{25}=\frac{AC^2+AB^2}{41}=\frac{164}{41}\)

\(\Leftrightarrow AC=\sqrt{\frac{164\cdot16}{41}}\)

\(\Leftrightarrow AC=8\)

\(\Leftrightarrow AB=\sqrt{\frac{164\cdot25}{41}}\)

\(\Leftrightarrow AB=10\)

Vậy AB = 10 và AC = 8

(chúc bạn học tốt haha)

23 tháng 10 2019

.

9 tháng 9 2018

Bài 1 

a) \(BC=125\Rightarrow BC^2=15625\)

\(\frac{AB}{AC}=\frac{3}{4}\Rightarrow\frac{AB}{3}=\frac{AC}{4}\)từ đây ta có \(\frac{AB^2}{9}=\frac{AC^2}{16}\)

Áp dụng t/c dãy tỉ số bằng nhau ta có

\(\frac{AB^2}{9}=\frac{AC^2}{16}=\frac{AB^2+AC^2}{25}=\frac{BC^2}{25}=\frac{15625}{25}=625\)

\(\frac{AB^2}{9}=625\Rightarrow AB=75\)

\(\frac{AC^2}{16}=625\Rightarrow AC=100\)

Áp dụng hệ thức lượng trong tam giác vuông ta có 

\(AB^2=BH\cdot BC\Rightarrow BH=\frac{AB^2}{BC}=\frac{5625}{125}=45\)

\(AC^2=CH\cdot BC\Rightarrow CH=\frac{AC^2}{BC}=\frac{10000}{125}=80\)

b.c) làm tương tự cũng áp dụng HTL trong tam giác vuông

Bài 2

Hình bạn tự vẽ

Ta có \(EH\\ AC\left(EH\perp AB;AC\perp AB\right)\Rightarrow\frac{BE}{AB}=\frac{BH}{BC}\Rightarrow BE=\frac{AB\cdot BH}{BC}\Rightarrow BE^2=\frac{AB^2\cdot BH^2}{BC^2}\)

\(\Leftrightarrow BE^2=\frac{BH\cdot BC\cdot BH^2}{BC^2}=BH^3\)

Bài 3 Đề bài này không đủ dữ kiện tính S của ABC

12 tháng 9 2018

Cám ơn cậu nhaaaaa