\(2\sqrt{2}sinB.sinC=sinB+sinC\) .

Tính

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
17 tháng 6 2020

f/

\(sin2A+sin2B+sin2C=2sin\left(A+B\right).cos\left(A-B\right)+2sinC.cosC\)

\(=2sinC.cos\left(A-B\right)+2sinC.cosC\)

\(=2sinC\left(cos\left(A-B\right)+cosC\right)\)

\(=2sinC\left[cos\left(A-B\right)-cos\left(A+B\right)\right]\)

\(=4sinC.sinA.sinB\)

g/

\(cos^2A+cos^2B+cos^2C=\frac{1}{2}+\frac{1}{2}cos2A+\frac{1}{2}+\frac{1}{2}cos2B+cos^2C\)

\(=1+\frac{1}{2}\left(cos2A+cos2B\right)+cos^2C\)

\(=1+cos\left(A+B\right).cos\left(A-B\right)+cos^2C\)

\(=1-cosC.cos\left(A-B\right)+cos^2C\)

\(=1-cosC\left(cos\left(A-B\right)-cosC\right)\)

\(=1-cosC\left[cos\left(A-B\right)+cos\left(A+B\right)\right]\)

\(=1-2cosC.cosA.cosB\)

NV
17 tháng 6 2020

d/ \(sinA+sinB+sinC=2sin\frac{A+B}{2}cos\frac{A-B}{2}+2sin\frac{C}{2}.cos\frac{C}{2}\)

\(=2cos\frac{C}{2}.cos\frac{A-B}{2}+2sin\frac{C}{2}.cos\frac{C}{2}\)

\(=2cos\frac{C}{2}\left(cos\frac{A-B}{2}+sin\frac{C}{2}\right)\)

\(=2cos\frac{C}{2}\left(cos\frac{A-B}{2}+cos\frac{A+B}{2}\right)\)

\(=4cos\frac{C}{2}.cos\frac{A}{2}.cos\frac{B}{2}\)

e/

\(cosA+cosB+cosC=2cos\frac{A+B}{2}cos\frac{A-B}{2}+1-2sin^2\frac{C}{2}\)

\(=1+2sin\frac{C}{2}.cos\frac{A-B}{2}-2sin^2\frac{C}{2}\)

\(=1+2sin\frac{C}{2}\left(cos\frac{A-B}{2}-sin\frac{C}{2}\right)\)

\(=1+2sin\frac{C}{2}\left(cos\frac{A-B}{2}-cos\frac{A+B}{2}\right)\)

\(=1+4sin\frac{C}{2}.sin\frac{A}{2}sin\frac{B}{2}\)

AH
Akai Haruma
Giáo viên
11 tháng 4 2018

Câu a)

Ta sử dụng 2 công thức:

\(\bullet \tan (180-\alpha)=-\tan \alpha\)

\(\bullet \tan (\alpha+\beta)=\frac{\tan \alpha+\tan \beta}{1-\tan \alpha.\tan \beta}\)

Áp dụng vào bài toán:

\(\text{VT}=\tan A+\tan B+\tan C=\tan A+\tan B+\tan (180-A-B)\)

\(=\tan A+\tan B-\tan (A+B)=\tan A+\tan B-\frac{\tan A+\tan B}{1-\tan A.\tan B}\)

\(=(\tan A+\tan B)\left(1+\frac{1}{1-\tan A.\tan B}\right)=(\tan A+\tan B).\frac{-\tan A.\tan B}{1-\tan A.\tan B}\)

\(=-\tan A.\tan B.\frac{\tan A+\tan B}{1-\tan A.\tan B}=-\tan A.\tan B.\tan (A+B)\)

\(=\tan A.\tan B.\tan (180-A-B)\)

\(=\tan A.\tan B.\tan C=\text{VP}\)

Do đó ta có đpcm

Tam giác $ABC$ có ba góc nhọn nên \(\tan A, \tan B, \tan C>0\)

Áp dụng BĐT Cauchy ta có:

\(P=\tan A+\tan B+\tan C\geq 3\sqrt[3]{\tan A.\tan B.\tan C}\)

\(\Leftrightarrow P=\tan A+\tan B+\tan C\geq 3\sqrt[3]{\tan A+\tan B+\tan C}\)

\(\Rightarrow P\geq 3\sqrt[3]{P}\)

\(\Rightarrow P^3\geq 27P\Leftrightarrow P(P^2-27)\geq 0\)

\(\Rightarrow P^2-27\geq 0\Rightarrow P\geq 3\sqrt{3}\)

Vậy \(P_{\min}=3\sqrt{3}\). Dấu bằng xảy ra khi \(\angle A=\angle B=\angle C=60^0\)

AH
Akai Haruma
Giáo viên
11 tháng 4 2018

Câu b)

Ta sử dụng 2 công thức chính:

\(\bullet \tan (\alpha+\beta)=\frac{\tan \alpha+\tan \beta}{1-\tan \alpha.\tan \beta}\)

\(\bullet \tan (90-\alpha)=\frac{1}{\tan \alpha}\)

Áp dụng vào bài toán:

\(\text{VT}=\tan \frac{A}{2}.\tan \frac{B}{2}+\tan \frac{B}{2}.\tan \frac{C}{2}+\tan \frac{C}{2}.\tan \frac{A}{2}\)

\(=\tan \frac{A}{2}.\tan \frac{B}{2}+\tan \frac{C}{2}(\tan \frac{A}{2}+\tan \frac{B}{2})\)

\(=\tan \frac{A}{2}.\tan \frac{B}{2}+\tan (90-\frac{A+B}{2})(\tan \frac{A}{2}+\tan \frac{B}{2})\)

\(=\tan \frac{A}{2}.\tan \frac{B}{2}+\frac{\tan \frac{A}{2}+\tan \frac{B}{2}}{\tan (\frac{A+B}{2})}\)

\(=\tan \frac{A}{2}.\tan \frac{B}{2}+\frac{\tan \frac{A}{2}+\tan \frac{B}{2}}{\frac{\tan \frac{A}{2}+\tan \frac{B}{2}}{1-\tan \frac{A}{2}.\tan \frac{B}{2}}}\)

\(=\tan \frac{A}{2}.\tan \frac{B}{2}+1-\tan \frac{A}{2}.\tan \frac{B}{2}=1=\text{VP}\)

Ta có đpcm.

Cũng giống phần a, ta biết do ABC là tam giác nhọn nên

\(\tan A, \tan B, \tan C>0\)

Đặt \(\tan A=x, \tan B=y, \tan C=z\). Ta có: \(xy+yz+xz=1\)

Và \(T=x+y+z\)

\(\Rightarrow T^2=x^2+y^2+z^2+2(xy+yz+xz)\)

Theo hệ quả quen thuộc của BĐT Cauchy:

\(x^2+y^2+z^2\geq xy+yz+xz\)

\(\Rightarrow T^2\geq 3(xy+yz+xz)=3\)

\(\Rightarrow T\geq \sqrt{3}\Leftrightarrow T_{\min}=\sqrt{3}\)

Dấu bằng xảy ra khi \(x=y=z=\frac{1}{\sqrt{3}}\Leftrightarrow \angle A=\angle B=\angle C=60^0\)

NV
15 tháng 4 2019

\(sinA+sinB-sinC=2sin\frac{A+B}{2}cos\frac{A-B}{2}-sinC\)

\(=2cos\frac{C}{2}.cos\frac{A-B}{2}-2sin\frac{C}{2}cos\frac{C}{2}\)

\(=2cos\frac{C}{2}\left(cos\frac{A-B}{2}-sin\frac{C}{2}\right)\)

\(=2cos\frac{C}{2}\left(cos\frac{A-B}{2}-cos\frac{A+B}{2}\right)\)

\(=4cos\frac{C}{2}sin\frac{A}{2}sin\frac{B}{2}\)