Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có
BD chung
góc ABD=góc HBD
=>ΔBAD=ΔBHD
b: ΔBAD=ΔBHD
=>DA=DH
mà DH<DC
nên DA<DC
c: Xét ΔDAK vuông tại A và ΔDHC vuông tại H có
DA=DH
AK=HC
=>ΔDAK=ΔDHC
=>góc ADK=góc HDC
=>góc HDC+góc KDC=180 độ
=>K,D,H thẳng hàng
a, Vì \(\Delta ABI\)và \(\Delta BDI\)đều có 1 góc vuông , mà \(\widehat{ABI}=\widehat{IBD}\)( Do BI là phân giác ) nên góc còn lại của 2 tam giác bằng nhau .
= > \(\widehat{BIA}=\widehat{BID}\) ( sử dụng t/c tổng 3 góc của 1 tam giác bằng 1800 )
= > \(\Delta ABI=\Delta DBI\left(g.c.g\right)\)
b, Vì \(\Delta ABI=\Delta DBI\)( câu a, )
= > \(AB=BD\)( 2 cạnh tương ứng )
c, Từ câu a, = > \(AI=ID\), mà \(\Delta DIC\)có IC là cạnh huyền nên IC > DI hay IC > AI
d, Vì \(\Delta ABI\perp A\)nên \(\widehat{AIB}\)chắc chắn là góc nhọn
= > góc bù với \(\widehat{AIB}\)là \(\widehat{BIC}\) là góc tù.
Mà trong 1 \(\Delta\), cạnh đối diện với góc tù luôn là cạnh lớn nhất trong \(\Delta\)( Do trong \(\Delta\)chỉ có tối đa 1 góc tù nên cạnh đối diện góc tù sẽ là lớn nhất )
= > Cạnh BC lớn nhất trong \(\Delta BIC\)hay BC > BI
a: BC=15cm
b: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có
BD chung
\(\widehat{ABD}=\widehat{HBD}\)
Do đó:ΔBAD=ΔBHD
c: Xét ΔADK vuông tại A và ΔHDC vuông tại H có
DA=DH
\(\widehat{ADK}=\widehat{HDC}\)
Do đó:ΔADK=ΔHDC
Suy ra: DK=DC và AK=HC
d: Xét ΔBKC có BA/AK=BH/HC
nên AH//KC
ạ) xét TG ABI và TG ẠCI
ta có AB=AC(gt)
góc BAI=góc IAC (gt)
Ai chung
vậy TG ABI=TG ACI(c-g-c)
b) Ta có ; IB=IC (suy từ TG ABI=TG ACI)
c) Ta có góc AIB= góc AIC (suy từ TG ABI=TG ACI)
mà góc AIB+ góc AIC= 180 độ
nên góc AIB= góc AIC= 180độ /2
=> góc AIB= góc AIC=90 độ
=> AI vuông góc với BC
c)TG ABC có
góc BAC+góc ABC+ góc ACB=180 độ
có góc BAC=50 độ và góc ABC= góc ACB (suy từ TG ABI=TG ACI)
Nên 50 độ + góc ABC+ góc ACB =180 độ
=>50 độ + góc ABC + góc ABC =180 độ
50độ +2 goc ABC = 180 độ
2 góc ABc = 180 độ - 50 độ =130 độ
góc ABC = 130 đọ /2 = 65 độ
vì góc ABC= góc ACB nên suy ra ACB =65 độ
xét TG EIB và Tg FIC có
IE=IF(gt)
IB=IC (cmt)
góc EIB= góc CIF (đối đỉnh)
vậy TG EIB = Tg FIC(c-g-c)
=> góc ABC= góc FCI hai góc tương ứng
vì góc ABC=65 độ => góc FCI =65 độ
Ta có ;
ạ) xét TG ABI và TG ẠCI
ta có AB=AC(gt)
góc BAI=góc IAC (gt)
Ai chung
vậy TG ABI=TG ACI(c-g-c)
b) Ta có ; IB=IC (suy từ TG ABI=TG ACI)
c) Ta có góc AIB= góc AIC (suy từ TG ABI=TG ACI)
mà góc AIB+ góc AIC= 180 độ
nên góc AIB= góc AIC= 180độ /2
=> góc AIB= góc AIC=90 độ
=> AI vuông góc với BC
c)TG ABC có
góc BAC+góc ABC+ góc ACB=180 độ
có góc BAC=50 độ và góc ABC= góc ACB (suy từ TG ABI=TG ACI)
Nên 50 độ + góc ABC+ góc ACB =180 độ
=>50 độ + góc ABC + góc ABC =180 độ
50độ +2 goc ABC = 180 độ
2 góc ABc = 180 độ - 50 độ =130 độ
góc ABC = 130 đọ /2 = 65 độ
vì góc ABC= góc ACB nên suy ra ACB =65 độ
xét TG EIB và Tg FIC có
IE=IF(gt)
IB=IC (cmt)
góc EIB= góc CIF (đối đỉnh)
vậy TG EIB = Tg FIC(c-g-c)
=> góc ABC= góc FCI hai góc tương ứng
vì góc ABC=65 độ => góc FCI =65 độ
ta có ; góc ACF=góc FCI+ góc BCA
haygóc ACF= 65 độ + 65 độ
vầy ACF= 130 độ
a) Xét tam giác ABI và tam giác ACI
có:+ AB=AC(gt)
+góc BAI=góc CAI (AI là tia phân giác của góc A)
+ AI: cạnh chung
Vậy tam giác ABI=ACI( c.g.c)
b) Vì tam giác ABI=ACI(cmt)
nên: IB=IC(2 cạnh tương ứng)
c) Vì tam giác ABI=ACI(cmt)
nên góc BIA=CIA(2 góc tương ứng)
mà góc BIA+CAI=\(180^o\)
nên góc BIA=CIA=\(\frac{180^o}{2}=90^o\)
=> góc BIA=CIA=\(90^o\)
Vậy AI vuông góc với BC
C1 :
Hình : tự vẽ
a )Vì CA=CB ( đề bài cho ) => tam giác ABC cân tại C
mà CI vuông góc vs AB => CI là đường cao của tam giác ABC
=> CI cũng là đường trung tuyến của tam giác ABC ( t/c tam giác cân )
=> IA=IB (đpcm)
C1 :
b) Có IA=IB ( cm phần a )
mà IA+IB = AB
IA + IA = 12 (cm)
=> IA = \(\frac{12}{2}=6\left(cm\right)\)
Xét tam giác vuông CIA có : CI2 + IA2 = CA2 ( Đ/l Py-ta -go )
CI2 + 62 = 102
CI2 = 102 - 62 = 64
=> CI = \(\sqrt{64}=8\left(cm\right)\)
Vậy CI ( hay IC ) = 8cm
â: Xét ΔBAI vuông tại A và ΔBEI vuông tại E có
BI chung
góc ABI=góc EBI
=>ΔBAI=ΔBEI
=>IA=IE
mà IE<IC
nên IA<IC
b: Xét ΔBEF vuông tại E và ΔBAC vuông tại A có
BE=BA
góc B chung
=>ΔBEF=ΔBAC
=>BF=BC
mà BI là phân giác
nên BI vuông góc CF
a. Áp dụng định lý pitago, ta có:
\(BC^2=AB^2+AC^2\)
\(\Rightarrow AC=\sqrt{10^2-6^2}=\sqrt{64}=8cm\)
\(C_{ABC}=6+8+10=24cm\)
b. xét tam giác vuông ABD và tam giác vuông BDM, có:
B : góc chung
AD: cạnh chung
Vậy tam giác vuông ABD = tam giác vuông BDM ( cạnh huyền - góc nhọn )
a: BC=căn 13^2-5^2=12cm
Xét ΔACE vuông tại C và ΔAKE vuông tại K có
AE chung
góc CAE=góc KAE
=>ΔACE=ΔAKE
b: CE=KE
KE<EB
=>CE<EB
c: góc BCK+góc ACK=90 độ
góc HCK+góc AKC=90 độ
mà góc ACK=góc AKC
nên góc BCK=góc HCK
=>CK là phân giác của góc HCB
a) Áp dụng định lí Py-ta-go trong tam giác ABC vuông tại A có:
\(BC^2=AB^2+AC^2\)
hay:\(BC^2=12^2+16^2=400\)
=> BC= 20 (cm)
b) Xét tam giác ABI và tam giác MBI vuông tại A, tại M
có: BI là cạnh chung
góc ABI = góc IBM ( vì BI là tia phân giác của góc B)
Suy ra: tam giác ABI = tam giác MBI ( cạnh huyền-góc nhọn) (1)
c) Từ (1) => AI=IM (hai cạnh tương ứng) (2)
Tam giác IMC vuông tại M => IC là cạnh huyền
=> IC là cạnh lớn nhất
Do đó: IC > IM (3)
Từ (2) và (3) => IC > AI.
A B C I M