K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 4 2019

a) Áp dụng định lí Py-ta-go trong tam giác ABC vuông tại A có:

\(BC^2=AB^2+AC^2\)

hay:\(BC^2=12^2+16^2=400\)

=> BC= 20 (cm)

b) Xét tam giác ABI và tam giác MBI vuông tại A, tại M

có: BI là cạnh chung

góc ABI = góc IBM ( vì BI là tia phân giác của góc B)

Suy ra: tam giác ABI = tam giác MBI ( cạnh huyền-góc nhọn) (1)

c) Từ (1) => AI=IM (hai cạnh tương ứng) (2)

Tam giác IMC vuông tại M => IC là cạnh huyền

=> IC là cạnh lớn nhất

Do đó: IC > IM (3)

Từ (2) và (3) => IC > AI.

23 tháng 4 2019

A B C I M

a: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có

BD chung

góc ABD=góc HBD

=>ΔBAD=ΔBHD

b: ΔBAD=ΔBHD

=>DA=DH

mà DH<DC

nên DA<DC

c: Xét ΔDAK vuông tại A và ΔDHC vuông tại H có

DA=DH

AK=HC

=>ΔDAK=ΔDHC

=>góc ADK=góc HDC

=>góc HDC+góc KDC=180 độ

=>K,D,H thẳng hàng

a, Vì \(\Delta ABI\)và \(\Delta BDI\)đều có 1 góc vuông , mà \(\widehat{ABI}=\widehat{IBD}\)( Do BI là phân giác ) nên góc còn lại của 2 tam giác bằng nhau .

= > \(\widehat{BIA}=\widehat{BID}\) ( sử dụng t/c tổng 3 góc của 1 tam giác bằng 1800 )

= > \(\Delta ABI=\Delta DBI\left(g.c.g\right)\)

b, Vì \(\Delta ABI=\Delta DBI\)( câu a, )

= > \(AB=BD\)( 2 cạnh tương ứng )

c, Từ câu a, = > \(AI=ID\), mà \(\Delta DIC\)có IC là cạnh huyền nên IC > DI hay IC > AI

d, Vì \(\Delta ABI\perp A\)nên \(\widehat{AIB}\)chắc chắn là góc nhọn 

= > góc bù với \(\widehat{AIB}\)là \(\widehat{BIC}\) là góc tù.

Mà trong 1 \(\Delta\), cạnh đối diện với góc tù luôn là cạnh lớn nhất trong \(\Delta\)( Do trong \(\Delta\)chỉ có tối đa 1 góc tù nên cạnh đối diện góc tù sẽ là lớn nhất )

= > Cạnh BC lớn nhất trong \(\Delta BIC\)hay BC > BI

a: BC=15cm

b: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có

BD chung

\(\widehat{ABD}=\widehat{HBD}\)

Do đó:ΔBAD=ΔBHD

c: Xét ΔADK vuông tại A và ΔHDC vuông tại H có

DA=DH

\(\widehat{ADK}=\widehat{HDC}\)

Do đó:ΔADK=ΔHDC

Suy ra: DK=DC và AK=HC

d: Xét ΔBKC có BA/AK=BH/HC

nên AH//KC

17 tháng 12 2014

ạ) xét TG ABI và TG ẠCI

ta có AB=AC(gt)

góc BAI=góc IAC (gt)

Ai chung 

vậy TG ABI=TG ACI(c-g-c)

b) Ta có ; IB=IC (suy từ TG ABI=TG ACI)

c) Ta có góc AIB= góc AIC (suy từ TG ABI=TG ACI)

mà  góc AIB+ góc AIC= 180 độ

nên  góc AIB= góc AIC= 180độ /2 

=> góc AIB= góc AIC=90 độ

=> AI vuông góc với BC

c)TG ABC có

góc BAC+góc ABC+ góc ACB=180 độ

có góc BAC=50 độ và góc ABC= góc ACB (suy từ TG ABI=TG ACI)

Nên 50 độ + góc ABC+  góc ACB =180 độ

=>50 độ + góc ABC + góc ABC =180 độ

50độ +2 goc ABC = 180 độ

2 góc ABc = 180 độ - 50 độ =130 độ

góc ABC = 130 đọ /2 = 65 độ

vì góc ABC= góc ACB nên suy ra ACB =65 độ

xét TG EIB và Tg FIC có

IE=IF(gt)

IB=IC (cmt) 

góc EIB= góc CIF (đối đỉnh)

vậy TG EIB = Tg FIC(c-g-c)

=>  góc ABC= góc FCI hai góc tương ứng

vì góc ABC=65 độ => góc FCI =65 độ

Ta có ; 

ạ) xét TG ABI và TG ẠCI

ta có AB=AC(gt)

góc BAI=góc IAC (gt)

Ai chung 

vậy TG ABI=TG ACI(c-g-c)

b) Ta có ; IB=IC (suy từ TG ABI=TG ACI)

c) Ta có góc AIB= góc AIC (suy từ TG ABI=TG ACI)

mà  góc AIB+ góc AIC= 180 độ

nên  góc AIB= góc AIC= 180độ /2 

=> góc AIB= góc AIC=90 độ

=> AI vuông góc với BC

c)TG ABC có

góc BAC+góc ABC+ góc ACB=180 độ

có góc BAC=50 độ và góc ABC= góc ACB (suy từ TG ABI=TG ACI)

Nên 50 độ + góc ABC+  góc ACB =180 độ

=>50 độ + góc ABC + góc ABC =180 độ

50độ +2 goc ABC = 180 độ

2 góc ABc = 180 độ - 50 độ =130 độ

góc ABC = 130 đọ /2 = 65 độ

vì góc ABC= góc ACB nên suy ra ACB =65 độ

xét TG EIB và Tg FIC có

IE=IF(gt)

IB=IC (cmt) 

góc EIB= góc CIF (đối đỉnh)

vậy TG EIB = Tg FIC(c-g-c)

=>  góc ABC= góc FCI hai góc tương ứng

vì góc ABC=65 độ => góc FCI =65 độ

ta có ;  góc ACF=góc FCI+ góc BCA

haygóc ACF= 65 độ + 65 độ 

vầy ACF= 130 độ

 

 

6 tháng 6 2016

a) Xét tam giác ABI và tam giác ACI

có:+ AB=AC(gt)

     +góc BAI=góc CAI (AI là tia phân giác của góc A)

     + AI: cạnh chung

Vậy tam giác ABI=ACI( c.g.c)

b) Vì tam giác ABI=ACI(cmt)

nên: IB=IC(2 cạnh tương ứng)

c) Vì tam giác ABI=ACI(cmt)

nên góc BIA=CIA(2 góc tương ứng)

mà góc BIA+CAI=\(180^o\)

nên góc BIA=CIA=\(\frac{180^o}{2}=90^o\)

=> góc BIA=CIA=\(90^o\)

Vậy AI vuông góc với BC

Bài 1: Cho tam giác ABC có CA = CB = 10 cm AB = 12 cm. Kẻ CI vuông góc với AB (I thuộc AB )a,chứng minh rằng IA=IBb, Tính độ dài ICc, Kẻ IH vuông với AC (H thuộc AC) kẻ IK vuông góc với BC (K thuộc BC).So sánh các độ dài IH và IKBài 2: cho tam giác ABC cân tại A. Trên cạnh AB lấy điểm D. Trên cạnh AC lấy điểm E sao cho AD=AEa, chứng minh rằng BE=CDb, chứng minh rằng góc ABE bằng góc ACDc, Gọi K là giao điểm của...
Đọc tiếp

Bài 1: Cho tam giác ABC có CA = CB = 10 cm AB = 12 cm. Kẻ CI vuông góc với AB (I thuộc AB )

a,chứng minh rằng IA=IB

b, Tính độ dài IC

c, Kẻ IH vuông với AC (H thuộc AC) kẻ IK vuông góc với BC (K thuộc BC).So sánh các độ dài IH và IK

Bài 2: cho tam giác ABC cân tại A. Trên cạnh AB lấy điểm D. Trên cạnh AC lấy điểm E sao cho AD=AE

a, chứng minh rằng BE=CD

b, chứng minh rằng góc ABE bằng góc ACD

c, Gọi K là giao điểm của BE và CD. Tam giác KBC là tam giác gì? Vì sao?

Bài 3: Cho tam giác ABC vuông ở C, có góc A bằng 60 độ tia phân giác của góc BAC cắt BC ở E kẻ CK vuông góc với AB (K thuộc AB) kẻ BD vuông góc với tia AE (D thuộc tia AE)chứng minh:

a, AC=AK và AE vuông góc CK

b,KB=KA

c, EB > AC

d, ba đường AC,BD,KE cùng đi qua 1 điểm

Bài 4: Cho tam giác nhọn ABC vẽ ra phía ngoài tam giác ABC các tam giác đều ABD và ACE .Gọi M là giao điểm của DC và BE Chứng minh rằng:

a, tam giác ABE=tam giác ADC

b,góc BMC=120°

Bài 5: Cho tam giác ABC vuông ở C ,có góc A bằng 60 độ tia phân giác của góc BAC cắt BC ở E,kẻ EK vuông góc với AB( K thuộc AB)kẻ BD vuông góc với AE (D thuộc AE) chứng minh

a,AK=KB

b, AD=BC

2
12 tháng 5 2019

C1 :

Hình : tự vẽ 

a )Vì CA=CB ( đề bài cho ) => tam giác ABC cân tại C

                                       mà CI vuông góc vs AB => CI là đường cao của tam giác ABC 

=> CI cũng là đường trung tuyến của tam giác ABC ( t/c tam giác cân )

=> IA=IB (đpcm)

12 tháng 5 2019

C1 : 

b) Có IA=IB ( cm phần a ) 

mà IA+IB = AB 

      IA + IA = 12 (cm)

=> IA = \(\frac{12}{2}=6\left(cm\right)\)

Xét tam giác vuông CIA có :     CI2  +   IA2  = CA2  ( Đ/l Py-ta -go )

                                                   CI2 +  62     = 102

                                                          CI2       = 102  - 6= 64

=> CI = \(\sqrt{64}=8\left(cm\right)\)

Vậy CI ( hay IC ) = 8cm

Bài 1 : Cho tAm giác cân ABC có <BAC=120 độ. Vẽ đường cao AM ( M thuộc BC ) a) Chứng mình rằng : CM=MB và AM là tia phân giác của <BACb) Kẻ MD vuông góc với AB ( D thuộc AB), kẻ ME vuông góc với AC ( E thuộc AC). Chứng minh tam giác ADE cân và DE // BC.c) Chứng minh rằng tam giác MDE đềud) Đường vuông góc với BC kẻ từ C cắt tia BA tại F. Tính độ dài cạnh AF biết CF = 6 cmBài 2: Cho tam giác ABC vuông tại B,...
Đọc tiếp

Bài 1 : Cho tAm giác cân ABC có <BAC=120 độ. Vẽ đường cao AM ( M thuộc BC )

 a) Chứng mình rằng : CM=MB và AM là tia phân giác của <BAC

b) Kẻ MD vuông góc với AB ( D thuộc AB), kẻ ME vuông góc với AC ( E thuộc AC). Chứng minh tam giác ADE cân và DE // BC.

c) Chứng minh rằng tam giác MDE đều

d) Đường vuông góc với BC kẻ từ C cắt tia BA tại F. Tính độ dài cạnh AF biết CF = 6 cm

Bài 2: Cho tam giác ABC vuông tại B, kẻ AI là tia phân giác của góc BAC, IH vuông góc với AC tại H.

a. Chứng minh tam giác ABI = tam giác AHI

b. HI  cắt AB tại K. Chứng tỏ rằng BK=HC

c. Chứng minh rằng BH // KC

d. Qua C kẻ đường thẳng song song với HK, cắt AI tại O. Tìm điều kiện của tam giác ABC để tam giác CIO đều

Bài 3: Cho tam giác ABC cân tại A. Kẻ AH vuông góc với BC ( H thuộc BC)

a.  Chứng minh : tam giác AHB= tam giác AHC

b. Gỉa sử AB = AC = 5cm, BC = 8cm. Tính độ dài AH

c. Trân tia đối của tai HA lấy điểm M sao cho HM - HA. chứng minh tam giác ABM cân

d. Chứng minh BM // AC

0

â: Xét ΔBAI vuông tại A và ΔBEI vuông tại E có

BI chung

góc ABI=góc EBI

=>ΔBAI=ΔBEI

=>IA=IE

mà IE<IC

nên IA<IC

b: Xét ΔBEF vuông tại E và ΔBAC vuông tại A có

BE=BA

góc B chung

=>ΔBEF=ΔBAC

=>BF=BC

mà BI là phân giác

nên BI vuông góc CF

25 tháng 4 2023

Làm thế nào để IE<IC vậy

8 tháng 2 2022

a. Áp dụng định lý pitago, ta có:

\(BC^2=AB^2+AC^2\)

\(\Rightarrow AC=\sqrt{10^2-6^2}=\sqrt{64}=8cm\)

\(C_{ABC}=6+8+10=24cm\)

b. xét tam giác vuông ABD và tam giác vuông BDM, có:

B : góc chung

AD: cạnh chung

Vậy  tam giác vuông ABD = tam giác vuông BDM ( cạnh huyền - góc nhọn )

 

8 tháng 2 2022

có vẽ hình nha mọi người

 

a: BC=căn 13^2-5^2=12cm

Xét ΔACE vuông tại C và ΔAKE vuông tại K có

AE chung

góc CAE=góc KAE

=>ΔACE=ΔAKE

b: CE=KE

KE<EB

=>CE<EB

c: góc BCK+góc ACK=90 độ

góc HCK+góc AKC=90 độ

mà góc ACK=góc AKC

nên góc BCK=góc HCK

=>CK là phân giác của góc HCB