Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề sai rồi bạn nhé. Hai điểm có cùng gốc sao song song với nhau được
a) Có tam giác ABC vuông tại A
=>\(BC^2=AC^2+AB^2\) ( định lí Pitago)
=>\(BC^2=8^2+6^2=100\)
=> BC=10 (cm)
b) Xét tam giác vuông ABE và tam giác vuông KBE có
Cạnh BE chung
Góc DBA= góc DBK hay góc EBA= góc EBK ( vì BD là tia phân giác của góc ABC)
=> tam giác ABE= tam giác KBE( cạnh góc vuông- góc nhọn)
=> BA=BK ( 2 cạnh tương ứng)
Vạy tam giác ABK cân tại B
c) Nối D với K, ta có tam giác DKE vuông tại E
Theo câu b, ta có tam giác ABE= tam giác KBE
=> KE=EA( 2 cạnh tương ứng) và góc EAB=góc EKB (1)
Xét tam giác vuông DEA và tam giác vuông DEK có
Cạnh DE chung
EA=KE
=> tam giác DEA= tam giác DEK ( 2 cạnh góc vuông)
=> Góc DAE=góc DKE (2)
Từ (1) và (2) =>góc DKE+ góc EKB=góc DAE+ góc EAB= góc DAB=90 độ
=> Góc DKB= 90 độ
Vậy DK vuông góc với BC
d)
Có \(DK⊥BC,AH⊥BC\) =>DK//AB
=> góc DKE= góc EAH (1)
Có tam giác DEA=tam giác DEK
=> góc DAE= góc DKE (2)
Từ (1) và (2) => góc EAH= góc DAE hay góc CAK= góc KAH
Vậy AK là phân giác của góc HAC
a) Xét tam giác vuông ABE và tam giác vuông KBE có
Cạnh BE chung
DBA=DBK hay EBA=EBA ( vì BD là phân giác của góc ABC)
=>\(\Delta ABE=\Delta KBE\) ( cạnh góc vuông- góc nhọn)
=>BA=BK
Vậy tam giác ABK cân tại B
b) Xét \(\Delta ABD\) và \(\Delta KBD\) có
AB=BK
ABD=KBD
Cạnh BD chung
=> \(\Delta ABD=\Delta KBD\left(c.g.c\right)\)
=> DKB=DAB=90 độ
Vậy \(DK⊥BC\)
c)d)
Xét \(\Delta ABI\) và \(\Delta KBI\) có
BA=BK
ABI=FBI
Cạnh BF chung
=> \(\Delta ABI=\Delta KBI\left(c.g.c\right)\)
=> IA=IK
Ta có DA=DK, IA=IK hay ID là đường trung trực của AK
=>AE=EK
Có \(DK⊥BC,AH⊥BC\) => DK//AH
=>DKE=EAI( 2 góc so le trong)
Xét tam giác vuông DKE và tam giác vuông EAI có
AE=EK
DKE=EAI
=> \(\Delta DKE=\Delta EAI\)(cạnh góc vuông- góc nhọn)
=>DK=AI
Mà DK=DA
=>AI=AD
Xét tam giác vuông DAE và tam giác vuông IAE có
DA=DI
Cạnh AE chung
=> \(\Delta DAE=\Delta IAE\)( cạnh huyền- cạnh góc vuông)
=>DAE=EAI hay góc CAK= góc KAH
Vậy AK là phân giác của HAC
Xét tam giác vuông IKE và tam giác vuông EAD có
AE=EK
KEI=AED( 2 góc đối đỉnh)
=>\(\Delta IKE=\Delta EAD\)( cạnh góc vuông- góc nhọn)
=>IKE=EAD
Mà IKE và EAD là 2 góc so le trong =>IK//AC
a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
góc ABD=góc EBD
=>ΔBAD=ΔBED
b: ΔBAD=ΔBED
=>DA=DE
=>ΔDAE cân tại D
=>góc DAE=góc DEA
c: BA=BE
DA=DE
=>BD là trung trực của AE
a: Xét ΔBAK có
BE là đường cao
BE là đường trung tuyến
Do đó: ΔBAK cân tại B
b: Xét ΔBAD và ΔBKD có
BA=BK
\(\widehat{ABD}=\widehat{KBD}\)
BD chung
Do đó: ΔBAD=ΔBKD
Suy ra: \(\widehat{BAD}=\widehat{BKD}=90^0\)
a) xét ABE vuông tại E và KBE vuông tại E
có góc ABE =KBE(gt)
BE chug
=> ABE=KBE ( ch -gn)
=> AB=KB( cạnh t/ư)
=> ABK cân tại B
b) xét ABD và KBD
có AB=KB
ABD=KBD
BD chung
=> ABD = KBD( cgc)
=> BAD = BKD
mà BAD = 90 độ
=> BKD =90 độ
hay DK vuông góc BC tại K
Xin lỗi mình không thể chụp ảnh.
Phần 5 thì chỉ có AE song song với CF thôi nhé. Còn BD vuông góc với CF.
1. Xét tam giác ABD và tam giác EBD có:
BAD=BED=90o (gt)
ABD= EBD( BD là tia phân giác)
BD chung ( gt)
=> 2 tam giác = nhau
=> AB=BE ( 2 cạnh tương ứng)
Xét tam giác EBF và tam giác ABC có:
B1=B2(cmt)
A=E (cmt)
BE=BA( cmt)
=> 2 tam giác = nhau
2. Trong tam giác cân, tia phân giác xuất phát từ đỉnh đồng thời là đường trung trực. => BH vuông góc với AE và H là trung điểm của AE( tính chất đường trung trực) (đpcm)
3.Ta có: AD=ED( tam giác ABD= EBD) (1)
Mặt khác, DC> ED( cạnh huyền lớn hơn cạnh góc vuông) (2)
Từ (1)và (2) => DC>AD ( đcpm)
Ý 2:
Có: BA=BE(cmt)
BF=BC( tam giác BFE= BCA)
và BC= BE+EC ; BF= AB+AF
=> AF= EC
=> Tam giác BFC cân
5. Gọi giao của BH và FC là G.
Có tam giác BFC cân( cmt)
=> BG vuông góc với FC ( trong tam giác cân, tia phân giác đồng thời là đường trung tuyến)
Mặt khác,BH vuông góc với AE
=> AE song song FC ( từ vuông gó đến song song)
Nhớ tim và cảm ơn nhé. cảm ơn bạn. Chúc bạn học tốt.