K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2020

Ap dung cong thuc \(r=\frac{b+c-a}{2}\) (b=AC,c=AB , cai nay ban tu chung minh nhe)

ta co \(\frac{r}{a}=\frac{b+c-a}{2a}\le\frac{\sqrt{2\left(b^2+c^2\right)}-a}{2a}=\frac{\sqrt{2.a^2}-a}{2a}=\frac{a\sqrt{2}-a}{2a}=\frac{\sqrt{2}-1}{2}\)

Dau = xay ra khi b=c hay tam giac ABC vuong can tai A

1 tháng 4 2017

Áp dụng BĐT Cauchy-Schwarz ta có: 

\(\sqrt{x}+\sqrt{y}+\sqrt{z}=\sqrt{ax}\frac{1}{\sqrt{a}}+\sqrt{by}\frac{1}{\sqrt{b}}+\sqrt{cz}\frac{1}{\sqrt{c}}\)

\(\le\sqrt{\left(ax+by+cz\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)}=\sqrt{2S_{ABC}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)}\)

\(=\sqrt{\frac{abc}{2R}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)}=\sqrt{\frac{ab+bc+ca}{2R}}\le\sqrt{\frac{a^2+b^2+c^2}{2R}}\)

1 tháng 4 2017

có bị ngược dấu ko nhỉ ?

27 tháng 7 2017

Cho tam giác ABC vuông tại A,phân giác AD

a,CM 2AD =1AB +1AC 

b, Gọi I là giao điểm các đường phân giác của  tam giác ABC, biết IB=5,IC=10. Tính diện tích tam giác ABC

28 tháng 7 2017

a) Đặt AB = c; AC = b; AD = d. 
Áp dụng công thức tính diện tích tam giác bằng ½ tích hai cạnh nhân sin góc xen giữa ta có: 
S ABD = ½.AB.AD.sin BAD = ½.cd.sin 45º = ½cd.1/√2 
Tương tự: S ACD = ½bd.1/√2 
=> S ABC = S ABD + S ACD = ½cd.1/√2 + ½bd.1/√2 = ½d(b + c)/√2 
mà S ABC = ½bc 
=> ½d(b + c)/√2 = ½bc 
=> (b + c)/bc = √2/d 
<=> 1/b + 1/c = √2/d 

b,Kẻ CH ⊥ BI và CH cắt BA tại K. Tam giác BCK có BH vừa là phân giác vừa là đường cao Tam giác BCK cân tại B => BH là đường trung tuyến => CH = KH. và KC = 2HC. 

Đặt BC = x Ta có: AD = BK - AB = BC - AB = x - AB
Gọi giao điểm của AC và BH là E. 
Xét tam giác AEB và tam giác HEC có góc EAB = góc EHC = 90độ và góc AEB = góc HEC (đối đỉnh) 
tam giác AEB ~ tam giác HEC(g.g) 
Góc HCE = góc ABE. 
Góc HCE = góc ABC/2 (1) 
Mà Góc ECI = gócACB/2 (2) 
Từ (1) và (2) Góc ICH = Góc HCE + Góc ECI = (gócABC + góc ACB)/2 = 90độ/2 = 45độ. 
Xét tam giác HIC có góc IHC = 90độ và Góc ICH = 45 độ (góc còn lại chắc chắn = 45 độ) 
tam giác HIC vuông cân tại H => HI = HC. 
Áp dụng đinh lý Py-ta-go cho tam giác này ta được: 2HI² = IC² 
√2.IH = IC hay CH = IC/√2. 
CH =HI=√10 /√2

Suy ra BH=HI+IB=√10 /√2+√5

=>BC=√((√10 /√2+√5)²+(√10 /√2)²)

 KC = 2CH = 2.√10/√2

Xét tam giác: AKC có góc KAC = 90độ và Áp dụng định lý Py-ta-go ta có: KC² = AK² + AC² 
AC² = KC² - AK² hay AC² = (2.√10/√2)² - (x - AB)² (3) 

Tương tự đối với tam giác ABC ta có: AC² = BC² - AB² AC² = x² - AB² (4) 

Từ (3) và (4) suy ra (2.√10/√2)² - (x - AB)² = x² - AB² 

20 - (x² - 2ABx +AB²) = x² - AB²

=>10=x(x-AB)

sau đó tính AB rồi tính AC And S ABC