Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
GT | Cho △ABC vuông tại A có AB = 9cm; BC = 15 cm |
KL | a) Tính AC b) H ∈ BC sao cho BA = BH; HI _|_ BC (I ∈ AC). CM : △ABI = △HBI c) HI ∩ BA = {F} . CM : IF = IC d) CM : IF > HI |
a) Áp dụng định lí Pythagoras vào △ABC, ta có :
BC2 = AB2 + AC2
\(\Rightarrow\)152 = 92 + AC2
\(\Rightarrow\)AC2 = 144
\(\Rightarrow\)AC = 12
Vậy độ dài cạnh AC là 12 cm
b) Xét △ABI và △HBI có :
IB chung
BA = BH (gt)
\(\Rightarrow\) △ABI = △HBI (cạnh huyền-góc nhọn)
[ĐPCM]
c) Ta có : △ABI = △HBI
\(\Rightarrow\)IA = IH (cặp cạnh tương ứng)
Xét △AIF và △HIC có :
IA = IH (Chứng minh trên)
^AIF = ^HIC (Đối đỉnh)
\(\Rightarrow\)△AIF = △HIC (Cạnh góc vuông-Góc nhọn kề)
\(\Rightarrow\)IF = IC (Cặp cạnh tương ứng)
[ĐPCM]
d) Xét △IBC có H ∈ BC
\(\Rightarrow\)IC > HI
\(\Rightarrow\)IF > HI (Vì IF = IC)
[ĐPCM]
1) -Ta có: \(\widehat{MBD}=\widehat{ACB}\) (△ABC cân tại A) và \(\widehat{ACB}=\widehat{NCE}\) (đối đỉnh).
\(\Rightarrow\widehat{MBD}=\widehat{NCE}\)
-Xét △MDB và △NEC có:
\(\widehat{MBD}=\widehat{NCE}\) (cmt)
\(BD=CE\)
\(\widehat{MDB}=\widehat{NEC}=90^0\)
\(\Rightarrow\)△MDB=△NEC (g-c-g).
\(\Rightarrow DM=EN\) (2 cạnh tương ứng).
2) -Ta có: DM⊥BC tại D, EN⊥BC tại E nên DM//EN
-Xét △EMN và △DNM có:
\(DM=EN\) (cmt).
\(\widehat{DMN}=\widehat{ENM}\) (DM//EN và so le trong).
MN là cạnh chung.
\(\Rightarrow\)△EMN=△DNM (c-g-c).
\(\Rightarrow\widehat{EMN}=\widehat{DNM}\) (2 góc tương ứng) nên ME//DN.
3) -Có điểm I rồi kẻ thêm điểm I nữa hả bạn?
3) -Mình nói tóm tắt:
-Bạn chứng minh AK⊥BC tại K rồi từ đó chứng minh △OKB=△OKC (c-g-c) suy ra OB=OC.
-Bạn chứng minh △IDM=△INE (g-c-g) từ đó suy ra DI=IN và góc OKB, góc OKC là 2 góc vuông.
-Bạn chứng minh △OIM=△OIN(c-g-c) suy ra OM=ON
-Bạn chứng minh △OBM=△OCN (c-c-c) suy ra góc OBM= góc OCN.
-Bạn chứng minh △OAB=△OAC (c-c-c) suy ra góc OBM=góc OCA.
Suy ra góc OCN=góc OCA mà 2 góc này là 2 góc kề bù nên cùng bằng 900.
-\(S_{AOC}=\dfrac{1}{2}AC.OC\)
\(S_{AOC}=S_{AKC}+S_{OKC}=\dfrac{1}{2}AK.KC+\dfrac{1}{2}OK.KC=\dfrac{1}{2}KC\left(AK+OK\right)=\dfrac{1}{2}KC.OA\)
\(\Rightarrow AC.OC=CK.OA\)
\(\Rightarrow\dfrac{AC^2}{CK^2}=\dfrac{OA^2}{OC^2}=\dfrac{OA^2-AC^2}{OC^2-CK^2}=\dfrac{OC^2}{OK^2}\)
\(\Rightarrow\dfrac{AC}{CK}=\dfrac{OC}{OK}\)
\(\Rightarrow\dfrac{AC}{OC}=\dfrac{CK}{OK}\)
\(\Rightarrow\dfrac{CK.OC}{OK}=AC\)
\(\Rightarrow\dfrac{OK}{CK.OC}=\dfrac{1}{AC}\)
\(\Rightarrow\dfrac{OK^2}{CK^2.OC^2}=\dfrac{1}{AC^2}\)
\(\Rightarrow\dfrac{OC^2-CK^2}{OC^2.CK^2}=\dfrac{1}{AC^2}\)
\(\Rightarrow\dfrac{1}{CK^2}-\dfrac{1}{OC^2}=\dfrac{1}{AC^2}\)
a) Xét tam giác vuông ABM và tam giác vuông NCA có:
NC=AB( gt)
CA=BM ( gt)
=> Tam giác ABM = Tam giác NCA
b) Xét tam giác vuông NCA và tam giác vuông BAC có:
AC chung
NC=BA
=> Tam giác NCA =Tam giác BAC
=> ^NAC =^BCA
mà hai góc trên ở vị trí so le trong
=> NA//BC (1)
c) Xét tam giác vuông ABC và tam giác vuông BMA có:
AB chung
AC=BM
=> Tam giác vuông ABC = Tam giác vuông BMA
=> ^MAB=^ABC
mà hai góc trên ở vị trí so le trong
=> MA//CB (2)
từ (1) , (2) => N, A, M thẳng hàng
Ta lại có: NA=AM ( Tam giác ABM =tam giác NCA)
=> A là trung điểm MN
Ta có:
AB=AD
=> tam giác BDA cân tại B
=> \(\widehat{BAD}=\widehat{BDA}\)(1)
Ta lại có: \(\widehat{BDA}+\widehat{HAD}=90^o,\widehat{BAD}+\widehat{DAE}=90^o\)(2)
Từ (1) và (2) ta suy ra: \(\widehat{HAD}=\widehat{DAE}\)
Xét tam giác HAD và tam giác EAD có:
\(\widehat{HAD}=\widehat{DAE}\)( chứng minh trên)
AH=AE (gt)
AD chung
Suy ra tam giác HAD và tam giác EAD
=> \(\widehat{AHD}=\widehat{ADE}\)
như vậy DE vuông AC
b) Ta có: BD+AH =BA+AE < BA+AC vì (AH=AE, BD=AB, E<AC)
Em xem lại đề bài nhé
1: Xet ΔMDB vuông tại D và ΔNEC vuông tại E có
BD=CE
góc MBD=góc NCE
=.ΔMDB=ΔNEC
=>DM=EN
2: Xét tứ giác MDNE có
MD//NE
MD=NE
=>MDNE là hình bình hành
=>MN cắt DE tại trung điểm của mỗi đường và ME//ND