Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tam giác ABC vuông tại A nên áp dụng Py-ta-go
\(\Rightarrow BC^2=AB^2+AC^2=6^2+8^2=100\Rightarrow BC=10\left(cm\right)\)
tam giác ABC vuông tại A có đường cao AH nên áp dụng hệ thức lượng
\(\Rightarrow AB^2=BH.BC\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{6^2}{10}=3,6\left(cm\right)\)
tam giác ABC vuông tại A có đường cao AH nên áp dụng hệ thức lượng
\(\Rightarrow AC^2=CH.BC\Rightarrow CH=\dfrac{AC^2}{BC}=\dfrac{8^2}{10}=6,4\left(cm\right)\)
tam giác ABC vuông tại A có đường cao AH nên áp dụng hệ thức lượng
\(\Rightarrow AH.BC=AB.AC\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{6.8}{10}=4,8\left(cm\right)\)
b) Kẻ HE,HF vuông góc với AB,AC chớ,chứ ko có điểm I
Vì \(\angle HEA=\angle HFA=\angle EAF=90\Rightarrow AEHF\) là hình chữ nhật
\(\Rightarrow EF=AH\)
tam giác AHB vuông tại H có đường cao HE nên áp dụng hệ thức lượng
\(\Rightarrow EA.EB=EH^2\)
tam giác AHB vuông tại H có đường cao HE nên áp dụng hệ thức lượng
\(\Rightarrow FA.FC=HF^2\Rightarrow EA.EB+FA.FC=EH^2+FH^2=EF^2=AH^2\)
tam giác ABC vuông tại A có đường cao AH nên áp dụng hệ thức lượng
\(\Rightarrow AH^2=HB.HC\Rightarrow HB.HC=EA.EB+FA.FC\)
a: Ta có: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC^2=8^2+6^2=100\)
=>\(BC=\sqrt{100}=10\left(cm\right)\)
b: Xét ΔABC vuông tại A có \(sinC=\dfrac{AB}{BC}\)
=>\(sinC=\dfrac{8}{10}=\dfrac{4}{5}\)
Xét ΔABC vuông tại A có \(\widehat{B}+\widehat{C}=90^0\)
=>\(cosB=sinC=\dfrac{4}{5}\)
c: Ta có: ΔABC vuông tại A
=>\(AH\cdot BC=AB\cdot AC\)
=>\(AH\cdot10=6\cdot8=48\)
=>AH=48/10=4,8(cm)
Xét ΔABC vuông tại A có AH là đường cao
nên \(\left\{{}\begin{matrix}BH\cdot BC=BA^2\\CH\cdot BC=CA^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{8^2}{10}=6,4\left(cm\right)\\CH=\dfrac{6^2}{10}=3,6\left(cm\right)\end{matrix}\right.\)
bạn hỏi nhiều quá , các bạn nhìn vào ko biết trả lời sao đâu !!!
rối mắt quá mà viết dày nên bài nọ xọ bài kia mình ko trả lời được cho dù biết rất rõ
a, Xét tam giác ABC vuông tại A, đường cao AH
Áp dụng định lí Pytago cho tam giác ABC vuông tại A
\(AB^2+AC^2=BC^2\Rightarrow AC^2=BC^2-AC^2=100-36=64\Leftrightarrow AC=8\)cm
* Áp dụng hệ thức :
\(AB^2=BH.BC\Rightarrow BH=\frac{AB^2}{BC}=\frac{36}{10}=\frac{18}{5}\)cm
* Áp dụng hệ thức :
\(AH^2=CH.BH\)mà \(BC-BH=CH\Rightarrow CH=10-\frac{18}{5}=\frac{32}{5}\)cm
\(\Rightarrow AH^2=\frac{32}{5}.\frac{18}{5}=\frac{576}{25}\Rightarrow AH=\frac{24}{5}\)cm
Chu vi tam giác ABC là : \(P_{ABC}=AB+AC+BC=6+10+8=24\)cm
Diện tích tam giác ABC là : \(S_{ABC}=\frac{1}{2}AB.AC=\frac{1}{2}.6.8=24\)cm2
b, Ta có AD là phân giác nên : \(\frac{AB}{BC}=\frac{BD}{CD}\)( t/c )
\(\Rightarrow\frac{CD}{BC}=\frac{BD}{AB}\)( tỉ lệ thức )
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{CD}{BC}=\frac{BD}{AB}=\frac{CD+BD}{AB+BC}=\frac{BC}{16}=\frac{1}{2}\)
\(\Rightarrow\frac{BD}{6}=\frac{1}{2}\Rightarrow BD=3\)cm
\(\Rightarrow HD=BH-BD=\frac{18}{5}-3=\frac{3}{5}\)cm
Áp dụng định lí Pytago cho tam giác ADH vuông tại H ta có :
\(AD^2=HD^2+AH^2=\frac{9}{25}+\frac{576}{25}=\frac{585}{25}\Rightarrow AD=\frac{3\sqrt{65}}{5}\)cm
a: BC=BH+CH
=2+8
=10(cm)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AH^2=HB\cdot HC\)
=>\(AH=\sqrt{2\cdot8}=4\left(cm\right)\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot CB\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}AB=\sqrt{2\cdot10}=2\sqrt{5}\left(cm\right)\\AC=\sqrt{8\cdot10}=4\sqrt{5}\left(cm\right)\end{matrix}\right.\)
b: Xét tứ giác ADHE có
\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)
=>ADHE là hình chữ nhật
=>DE=AH
c: ΔHDB vuông tại D
mà DM là đường trung tuyến
nên DM=HM=MB
\(\widehat{EDM}=\widehat{EDH}+\widehat{MDH}\)
\(=\widehat{EAH}+\widehat{MHD}\)
\(=90^0-\widehat{C}+\widehat{C}=90^0\)
=>DE vuông góc DM
\(a,\text{Áp dụng PTG:}BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\\ \text{Áp dụng HTL:}\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}=6,4\left(cm\right)\\AH=\dfrac{AB\cdot AC}{BC}=4,8\left(cm\right)\end{matrix}\right.\\ b,\text{Áp dụng HTL:}\left\{{}\begin{matrix}AM\cdot AB=AH^2\\AN\cdot AC=AH^2\end{matrix}\right.\\ \Rightarrow AM\cdot AB=AN\cdot AC\)
a: Xét ΔABC có \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
c: \(S_{ABC}=\dfrac{AB\cdot AC}{2}=\dfrac{6\cdot4.5}{2}=3\cdot4.5=13.5\left(cm^2\right)\)
Áp dụng PTG: \(AB=\sqrt{BC^2-AC^2}=6\left(cm\right)\)
Áp dụng HTL:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\\AH^2=BH\cdot HC\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}=3,6\left(cm\right)\\CH=\dfrac{AC^2}{BC}=6,4\left(cm\right)\\AH=\sqrt{3,6\cdot6,4}=4,8\left(cm\right)\end{matrix}\right.\)
\(\sin\widehat{B}=\dfrac{AC}{BC}=\dfrac{4}{5}\approx\sin53^0\\ \Leftrightarrow\widehat{B}\approx53^0\\ \Rightarrow\widehat{C}=90^0-\widehat{B}\approx90^0-53^0=37^0\)