Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Xét ΔBCD vuông tại B có BA là đường cao
nên \(BA^2=AD\cdot AC\left(1\right)\)
Xét ΔBAC vuông tại A có AH là đường cao
nên \(BA^2=BH\cdot BC\left(2\right)\)
Từ (1) và (2) suy ra \(AD\cdot AC=BH\cdot BC\)
a) Ta có: \(\sin\widehat{ACB}=\dfrac{AB}{BC}\)
nên \(AB=\dfrac{3}{5}\cdot20=12\left(cm\right)\)
Xét ΔABC vuông tại A có
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow AC^2=20^2-12^2=256\)
hay AC=16(cm)
b) Áp dụng hệ thức lượng trong tam giác vuông vào ΔCBD vuông tại B có BA là đường cao ứng với cạnh huyền CD, ta được:
\(AC\cdot AD=AB^2\)(1)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(BH\cdot BC=AB^2\)(2)
Từ (1) và (2) suy ra \(AC\cdot AD=BH\cdot BC\)
2: Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(BH\cdot BC=AB^2\left(1\right)\)
Xét ΔBDC vuông tại B có BA là đường cao ứng với cạnh huyền DC
nên \(AD\cdot AC=AB^2\left(2\right)\)
Từ (1) và (2) suy ra \(BH\cdot BC=AD\cdot AC\)
b: Xét ΔABC vuông tại A có AH là đường cao
nên \(BH\cdot BC=AB^2\left(1\right)\)
Xét ΔBCD vuông tại B có BA là đường cao
nên \(AD\cdot AC=AB^2\left(2\right)\)
Từ (1) và (2) suy ra \(BH\cdot BC=AD\cdot AC\)
a, Ta có: ∆AEF ~ ∆MCE (c.g.c)
=> A F E ^ = A C B ^
b, Ta có: ∆MFB ~ ∆MCE (g.g)
=> ME.MF = MB.MC
a: Xét ΔABC vuông tại A có AH là đường cao
nên AB^2=BH*BC
=>AB^2=3,6*10=36
=>AB=6cm
Xét ΔABC vuông tại A có
sin ACB=AB/BC=3/5
=>góc ACB=37 độ
b: ΔABM vuông tại A có AK là đường cao
nên BK*BM=BA^2
ΔABC vuông tại A có AH là đường cao
nên BH*BC=BA^2
=>BK*BM=BH*BC
=>BK/BC=BH/BM
=>ΔBKH đồng dạng với ΔBCM