K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 10 2017

Xét \(\widehat{ABC}\)vuông tại A , theo định lí pitago ta có:

BC2=AB2+AC2

225= 144 +  AC2 

AC2 = 225-144

        = 81

AC=9 cm

* Theo hệ thức lượng trong tam giác vuông ta có

\(\frac{1}{h^2}=\frac{1}{b^2}+\frac{1}{c^2}\)

\(\frac{1}{h^2}=\frac{1}{144}+\frac{1}{225}\)

\(h^2=\frac{144.225}{144+225}\approx87\)

* CH = AC/BC= 9 /15=3/5

Bài 5: 

Ta có: \(AB^2=BH\cdot BC\)

\(\Leftrightarrow BH\left(BH+9\right)=400\)

\(\Leftrightarrow BH^2+25HB-16HB-400=0\)

\(\Leftrightarrow BH=16\left(cm\right)\)

hay BC=25(cm)

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(\left\{{}\begin{matrix}AC^2=CH\cdot BC\\AH\cdot BC=AB\cdot AC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AC=15\left(cm\right)\\AH=12\left(cm\right)\end{matrix}\right.\)

26 tháng 8 2021

26 tháng 8 2021

1: \(BC=\sqrt{12^2+9^2}=15\left(cm\right)\)

\(AH=\dfrac{AB\cdot AC}{BC}=7,2\left(cm\right)\)

\(BH=\dfrac{AB^2}{BC}=\dfrac{144}{15}=9,6\left(cm\right)\)

CH=5,4(cm)

2: \(BC=\sqrt{2+2}=2\left(cm\right)\)

\(AH=\dfrac{AB\cdot AC}{BC}=1\left(cm\right)\)

\(BH=CH=AH=1\left(cm\right)\)

12 tháng 11 2021

\(BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\\ \left\{{}\begin{matrix}AH=\dfrac{AB\cdot AC}{BC}=4,8\left(cm\right)\\CH=\dfrac{AC^2}{BC}=6,4\left(cm\right)\\BH=\dfrac{AB^2}{BC}=3,6\left(cm\right)\end{matrix}\right.\)

12 tháng 11 2021

Áp dụng PTG ta có: \(AB^2+AC^2=BC^2\Rightarrow BC=\sqrt{6^2+8^2}=10\)

Áp dụng HTL ta có: \(AB.AC=AH.BC\Rightarrow AH=\dfrac{6.8}{10}=4,8\)

Áp dụng HTL ta có:\(BH.BC=AB^2\Rightarrow BC=\dfrac{6^2}{10}=3,6\)

Áp dụng HTL ta có:\(CH.BC=AC^2\Rightarrow BC=\dfrac{8^2}{10}=6,4\)

9 tháng 6 2021

Áp dụng hệ thức cạnh và đường cao :

BC . BH = AB2 = 152 = 225 (1)

Mặt khác : BC = BH + HC

=> BC - BH = HC = 16

=> BH = BC - 16

Thay vào (1) ta có :

BC . (BC - 16) = 225

<=> BC2 - 16BC - 225 = 0

<=> BC2 - 25BC + 9BC - 225 = 0

<=> BC(BC-25) + 9(BC-25) = 0

<=> (BC-25) (BC+9) = 0

Mà BC > 0 => BC = 25 ( cm )

Áp dụng định lý Pytago :

AC=√BC2−AB2=√252−152=20AC=BC2−AB2=252−152=20( cm )

Áp dụng hệ thức cạnh và đường cao :

AB⋅AC=BC⋅AHAB⋅AC=BC⋅AH

⇒AH=AB⋅ACBC=15⋅2025=12⇒AH=AB⋅ACBC=15⋅2025=12( cm )

13 tháng 9 2023

Áp dụng định lý Pytago vào tam giác ABC(góc A=90) có:

BC2=AB2+AC2

<=>BC2=32+42

<=>BC2=25

<=>BC=5(cm)

Áp dụng HTL vào tam giác ABC vuông tại A có đường cao AH được:

AB.AC=BC.AH

<=>3.4=5.AH

<=> AH=\(\dfrac{3.4}{5}\)

<=>AH=2,4(cm)

Áp dụng định lý Pytago vào tam giác AHB vuông tại H có:

AB2=AH2+BH2

<=>BH2=32-2,42

<=>BH2=3,24

<=>BH=1,8(cm)
Ta có:BC=BH+CH

=>CH=BC-BH=5-1,8=3,2(cm)

Vậy BC=5cm;AH=2,4cm;BH=1,8cm;CH=3,2cm