Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1a) A=D=E=90 độ
=>AEHD là hcn
=>AH=DE
b)Xét tam giác DBH vuông tại D có:
DI là đường trung tuyến ứng với cạnh huyền BH
=>DI=BH/2=IH
=>tam giác IDH cân tại I
=>góc IDH=góc IHD (1)
Gọi O là gđ 2 đường chéo AH và DE
=>OD=OA=OE=OH (tự c/m)
=> tam giác DOH cân tại O
=> góc ODH=góc OHD(2)
từ (1) và (2) => góc ODH+góc IDH=90 độ(EHD+DHI=90 độ)
=>IDvuông góc DE(3)
Cmtt ta được: KEvuông góc DE(4)
Từ (3)và (4) => DI//KE.
2a) Ta có góc HAB+góc HAC=90 độ (1)
Xét tam giác ABC vuông tại A có
AM là đg trung tuyến ứng vs cạnh huyền BC
=>AM=MC
=>tam giác AMC cân
=>góc MAC=góc ACM
Lại có: góc HAC+góc ACH=90 độ(2)
Từ (1) và (2) => góc BAH=góc ACM
Mà góc AMC=góc MAC(cmt)
=>ABH=MAC(3)
b)A=D=E=90 độ
=>AFHE là hcn
Gọi O là gđ EF và AM
OA=OF(tự cm đi nha)
=>tam giác OAF cân
=>OAF=OFA(4)
Ta có : OAF+MCA=90 độ(5)
Từ (3)(4) và (5)
=>MAC+OFA=90 độ
Hay AM vuông góc EF
k giùm mình nha.
a, Dễ thấy ADHE là hcn nên \(AH=DE\)
Mà AH là hình chiếu từ A tới BC nên \(AH\le AM\)
Do đó \(DE\le AM\)
Mà AM là tt ứng cạnh huyền BC nên \(AM=\dfrac{1}{2}BC\)
Vậy \(DE\le\dfrac{1}{2}BC\)
Lời giải:
Gọi $T$ là giao điểm $AK, DE$.
Xét tứ giác $ADHE$ có $\widehat{A}=\widehat{D}=\widehat{E}=90^0$ nên $ADHE$ là hình chữ nhật.
$\widehat{ADT}=\widehat{ADE}=\widehat{AHE}=90^0-\widehat{EHC}=\widehat{C}(1)$
Mặt khác:
Tam giác $ABC$ vuông tại $A$, $AK$ là đường trung tuyến ứng với cạnh huyền nên $AK=\frac{BC}{2}=BK$
$\Rightarrow ABK$ là tam giác cân tại $K$
$\Rightarrow \widehat{TAD}=\widehat{KAB}=\widehat{KBA}=\widehat{B}(2)$
Từ $(1); (2)\Rightarrow \widehat{ADT}+\widehat{TAD}=\widehat{B}+\widehat{C}=90^0$
$\Rightarrow \widehat{DTA}=180^0-(\widehat{ADT}+\widehat{TAD})=180^0-90^0=90^0$
$\Rightarrow DE\perp AK$ (đpcm)
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
\(\widehat{ABC}\) chung
Do đó: ΔABC~ΔHBA
b: XétΔHBA vuông tại H và ΔHAC vuông tại H có
\(\widehat{HBA}=\widehat{HAC}\left(=90^0-\widehat{C}\right)\)
Do đó: ΔHBA~ΔHAC
=>\(\dfrac{HB}{HA}=\dfrac{HA}{HC}\)
=>\(HB\cdot HC=HA^2\)
c: Xét tứ giác ADHE có \(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)
nên ADHE là hình chữ nhật
=>\(\widehat{AED}=\widehat{AHD}\)
mà \(\widehat{AHD}=\widehat{ABC}\left(=90^0-\widehat{HAB}\right)\)
nên \(\widehat{AED}=\widehat{ABC}\)
ΔABC vuông tại A
mà AM là đường trung tuyến
nên MA=MC
=>\(\widehat{MAC}=\widehat{ACB}\)
\(\widehat{MAC}+\widehat{AED}=\widehat{ABC}+\widehat{ACB}=90^0\)
=>DE\(\perp\)AM