Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì tam giác ABC cân tại a (GT)
=> góc ABC = góc ACB (ĐL) hay góc EBC = góc DCB (1)
Vì BD vuông góc với AC (GT) => Góc BDC = 90 độ (ĐN) (2)
Vì CE vuông góc với AB (GT) => Góc CEB = 90 độ (ĐN) (3)
Từ (2), (3) => Góc BDC = góc CEB = 90 độ (4)
Xét tam giác BEC và tam giác CDB có :
Góc BDC = góc CEB = 90 độ (Theo (4))
BC chung
góc EBC = góc DCB (Theo (1))
=> tam giác BEC = tam giác CDB (ch - gn) (5)
=> CE = BD (2 cạnh tương ứng)
b) Từ (5) => BE = CD (2 cạnh tương ứng) (6)
Từ (5) => Góc BCE = góc CBD (2 góc tương ứng) (7)
Mà góc BCE + góc ACE = góc ACB
góc CBD + góc ABD = góc ABC
góc ACB = góc ABC (Theo (1))
Ngoặc '}' 4 điều trên
=> Góc ACE = góc ABD hay góc DCO = góc EBO (8)
Xét tam giác BEO và tam giác CDO có :
Góc BEO = góc CDO = 90 độ (Theo (4))
BE = CD (Theo (6))
Góc EBO = góc DCO (Theo (8))
=> tam giác OEB = tam giác ODC (g.c.g) (9)
c) Từ (9) => OB = OC (2 cạnh tương ứng) (10)
Vì tam giác ABC cân tại A (GT) => AB = AC (ĐN) (11)
Xét tam giác ABO và tam giác ACO có :
AO chung
OB = OC (Theo (10))
AB = AC (Theo (11))
=> tam giác ABO = tam giác ACO (c.c.c)
=> Góc BAO = góc CAO (2 góc tương ứng)
Mà AO nằm giữa BO và CO
=> AO là tia pg của góc BAC (đpcm)
d) Ta có : BE = CD (Theo (6))
Mà BE = 3cm (GT)
=> CD = 3cm (12)
Xét tam giác BCD vuông tại D có :
BD2 + CD2 = BC2 (ĐL pi-ta-go)
Mà CD = 3cm (Theo (12))
BC = 5cm (GT)
=> BD2 + 32 = 52
=> BD2 + 9 = 25
=> BD2 = 25 - 9
=> BD2 = 16
=> BD2 = \(\sqrt{14}\)
=> BD = 4cm
Vậy a)... b)... c)... d)...
a: Xét ΔBEC vuông tại E và ΔCDB vuông tại D có
BC chung
\(\widehat{EBC}=\widehat{DCB}\)
Do đó:ΔBEC=ΔCDB
b: Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC
\(\widehat{BAD}\) chung
Do đó:ΔABD=ΔACE
Suy ra: AD=AE
c: Ta có: ΔBEC=ΔCDB
nên \(\widehat{IBC}=\widehat{ICB}\)
hayΔIBC cân tại I
Xét ΔABI và ΔACI có
AB=AC
AI chung
BI=CI
Do đó:ΔABI=ΔACI
Suy ra: \(\widehat{BAI}=\widehat{CAI}\)
hay AI là tia phân giác của góc BAC
d: Xét ΔABC có AE/AB=AD/AC
nên DE//BC
a: Xét ΔACE vuông tại C và ΔAKE vuông tại K có
AE chung
góc CAE=góc KAE
=>ΔACE=ΔAKE
b: Xét ΔEAB có góc EAB=góc EBA
nên ΔEAB cân tại E
=>EA=EB
Xét ΔECA vuông tại C và ΔEDB vuông tại D có
EA=EB
góc AEC=góc BED
=>ΔECA=ΔEDB
=>EC=ED
=>AD=BC