Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔHBA vuông tạiH và ΔABC vuông tại A có
góc B chung
=>ΔHBA đồng dạng với ΔABC
=>BH/BA=BA/BC
=>BA^2=BH*BC
b: Xét ΔHAC vuông tại H và ΔHDB vuông tại H có
góc HAC=góc HDB
=>ΔHAC đồng dạng vơi ΔHDB
=>HA/HD=HC/HB
=>HA*HB=HD*HC
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
=>ΔHBA đồng dạng với ΔABC
b: ΔABC vuông tại A có AH là đường cao
nên AH^2=HB*HC
a) Xét \(\Delta AHC\)và \(\Delta DHB\)có:
\(\widehat{AHC}=\widehat{DHB}=90^0\)
\(\widehat{HAC}=\widehat{HDB}\)(đối đỉnh)
suy ra: \(\Delta AHC~\Delta DHB\) (g.g)
b) Xét \(\Delta ABC\)và \(\Delta BDA\)có:
\(\widehat{BAC}=\widehat{DBA}=90^0\)
\(\widehat{ABC}=\widehat{BDA}\) (cùng phụ vs góc DBH)
suy ra: \(\Delta ABC~\Delta BDA\)
\(\Rightarrow\)\(\frac{AB}{BD}=\frac{AC}{AB}\)
\(\Rightarrow\)\(AB^2=BD.AC\)
c) \(\Delta HAC\)vuông tại H có HN là đường trung tuyến
\(\Rightarrow\)\(HN=AN=NC\)
\(\Rightarrow\) \(\Delta NHC\)cân tại N \(\Rightarrow\) \(\widehat{NHC}=\widehat{NCH}\)
Tương tự: \(\widehat{MBH}=\widehat{MHB}\)
mà \(\widehat{MBH}=\widehat{HCN}\)(slt do BM // NC)
\(\Rightarrow\) \(\widehat{MHB}=\widehat{HCN}\)
mà \(\widehat{HCN}=\widehat{NHC}\) (cmt)
\(\Rightarrow\)\(\widehat{MHB}=\widehat{NHC}\)
\(\Rightarrow\)\(\widehat{MHB}+\widehat{BHA}+\widehat{AHN}\)
\(=\widehat{BHA}+\widehat{AHN}+\widehat{NHC}=180^0\)
Vậy M, N, H thẳng hàng
Hình tự vẽ ha:)
a. Xét \(\Delta ABC\) và \(\Delta HBA\) có:
\(\widehat{BAC}=\widehat{BHA}\left(=90^o\right)\)
\(\widehat{B}\) chung
=> \(\Delta ABC\)~ \(\Delta HBA\) (g.g)
=> \(\dfrac{AB}{BH}=\dfrac{BC}{AB}\)
=> AB2= BH.BC
b. Theo đề, BD//AC
=> \(\dfrac{BH}{HC}=\dfrac{DH}{AH}\)
=> BH.AH=HC.DH
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
\(\widehat{B}\) chung
Do đó: ΔABC\(\sim\)ΔHBA
Suy ra: AB/HB=BC/BA
=>BH/AB=BC/BA(1)
hay \(AB^2=BH\cdot BC\)
Câu b đề sai rồi bạn
a. Xét tam giác ABC và tam giác HBA có:
góc A= góc H= 90o
góc B chung
=> tam giác ABC ~ tam giác HBA (g.g)
=> \(\dfrac{AB}{BC}\)=\(\dfrac{BH}{AB}\)
=> AB2= BH.BC
a) Xét ΔHBA và ΔABC có
\(\widehat{AHB}=\widehat{CAB}\left(=90^0\right)\)
\(\widehat{ABH}\) chung
Do đó: ΔHBA∼ΔABC(g-g)
⇒\(\frac{AB}{CB}=\frac{HB}{AB}\)
\(\Rightarrow AB^2=BH\cdot BC\)(đpcm)
b) Sửa đề: Chứng minh \(HA\cdot HB=HC\cdot HD\)
Xét ΔAHC và ΔDHB có
\(\widehat{AHC}=\widehat{DHB}\)(hai góc đối đỉnh)
\(\widehat{ACH}=\widehat{DBH}\)(hai góc so le trong, AC//DB)
Do đó: ΔAHC∼ΔDHB(g-g)
⇒\(\frac{HA}{HD}=\frac{HC}{HB}\)
hay \(HA\cdot HB=HC\cdot HD\)(đpcm)
c) Ta có: ΔHBA∼ΔABC(cmt)
⇒\(\widehat{HAB}=\widehat{ACB}\)(hai góc tương ứng)
hay \(\widehat{DAB}=\widehat{ACB}\)
Xét ΔDBA và ΔBAC có
\(\widehat{DBA}=\widehat{BAC}\left(=90^0\right)\)
\(\widehat{DAB}=\widehat{ACB}\)(cmt)
Do đó: ΔDBA∼ΔBAC(g-g)
⇒\(\frac{DB}{AB}=\frac{BA}{AC}\)
hay \(AB^2=AC\cdot BD\)(đpcm)
a) Xét tứ giác ADME có
ME//AD(gt)
MD//AE(gt)
Do đó: ADME là hình bình hành(Dấu hiệu nhận biết hình bình hành)
Hình bình hành ADME có \(\widehat{EAD}=90^0\)(\(\widehat{BAC}=90^0,E\in AC,D\in AB\))
nên ADME là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)
b) Ta có: ADME là hình chữ nhật(cmt)
nên ED=AM(Hai đường chéo trong hình chữ nhật ADME)
mà ED=5cm(gt)
nên AM=5cm
Ta có: ΔABC vuông tại A(gt)
mà AM là đường trung tuyến ứng với cạnh huyền BC(M là trung điểm của BC)
nên \(AM=\dfrac{BC}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)
\(\Leftrightarrow BC=2\cdot AM=2\cdot5=10\left(cm\right)\)
Xét ΔABC có AH là đường cao ứng với cạnh BC(gt)
nên \(S_{ABC}=\dfrac{AH\cdot BC}{2}=\dfrac{4.8\cdot10}{2}=24\left(cm^2\right)\)
c) Xét ΔABC có
M là trung điểm của BC(gt)
ME//AB(gt)
Do đó: E là trung điểm của AC(Định lí 1 về đường trung bình của tam giác)
Xét ΔABC có
M là trung điểm của BC(gt)
MD//AC(gt)
Do đó: D là trung điểm của AB(Định lí 1 về đường trung bình của tam giác)
Ta có: ΔAHB vuông tại H(AH⊥BC tại H)
mà HD là đường trung tuyến ứng với cạnh huyền AB(D là trung điểm của AB)
nên \(HD=\dfrac{AB}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)
mà \(AD=\dfrac{AB}{2}\)(D là trung điểm của AB)
nên HD=AD
Ta có: ΔAHC vuông tại H(AH⊥BC tại H)
mà HE là đường trung tuyến ứng với cạnh huyền AC(E là trung điểm của AC)
nên \(HE=\dfrac{AC}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)
mà \(AE=\dfrac{AC}{2}\)(E là trung điểm của AC)
nên HE=AE
Xét ΔEAD và ΔEHD có
EA=EH(cmt)
ED chung
AD=HD(cmt)
Do đó: ΔEAD=ΔEHD(c-c-c)
⇒\(\widehat{EAD}=\widehat{EHD}\)(hai góc tương ứng)
mà \(\widehat{EAD}=90^0\)(\(\widehat{BAC}=90^0\), D∈AB, E∈AC)
nên \(\widehat{EHD}=90^0\)
hay HD⊥HE(đpcm)