K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 6 2015

 

a) từ E kẻ đường kính ED' => H thuộc ED' => góc EAD'=90( góc nt chắn nửa đường tròn)

mặt khác ta lại có góc EAD=90( E thuộc AC, D thuộc AB) => D trùng D' => 3 điểm E,H,D thẳng hàng

b) (H): HA=HD=R => tam giác AHD cân => góc HAD=góc HDA

AH là đường cao => góc AHB =90 => góc HAB=góc ACB( cùng phụ góc ABC) hay góc HAD=góc ACB

=> góc HDA=ACB

xét tam giác ABC và tam giác AED: góc A chung, góc HDA=góc ACB => 2 tam giác đồng dạng theo trường hợp g.g

c) tam giác AHM vuông tại H => MH=\(\sqrt{AM^2-AH^2}=\sqrt{5^2-4,8}^2=1,4\)

Tam giác ABC vuông , AM là trung tuyến => MA=MB=MC=5

=> BC=10cm; HC=MC+MH=5+1,4=6,4

HB=MB-MH=5-1,4=3,6

áp dụng hệ thức lượng: 

\(AC=\sqrt{BC.HC}=\sqrt{10.6,4}=8\)

từ H kẻ HK vuông góc AB tại K => HK//AC => tam giác ACB đồng dạng tam giác KHB =>\(\frac{KH}{AC}=\frac{HB}{BC}\Leftrightarrow KH=\frac{3,6.8}{10}=2,88\)

S tứ giác AHDM=S MHA+ S AHD

S MHA=1/2 .AH.MH=1/2 .4,8.1,4=3,36. 

(H): HA=HD=> HD=5. tam giác AKD vuông tại K=> KD=\(\sqrt{HD^2-HK^2}=\sqrt{5^2-2,88^2}=\sqrt{16,7056}\)

Tam giac AHD cân => HK là đường cao đồng thời là trung tuyến => AD=2KD=\(2\sqrt{16,7056}\)

=> S AHD=1/2.HK.AD=\(\frac{1}{2}.2,88.2\sqrt{16,7056}\)

rồi cộng 2 cái vào là xong nha. 

đúng nha. mình làm bài này vừa dài vừa mệt

B1: Cho tam giác ABC vuông tại A, biết AB = 6cm, AC = 8cm. Vẽ đường cao AH, đường tròn tâm O đường kính AH cắt AB tại E và cắt AC tại điểm F.a) Chứng minh tứ giác AEHF là hình chữ nhậtb) Chứng minh tứ giác BEFC nội tiếpc) Gọi I là trung điểm của BC.Chứng minh AI vuông góc với EFd) Gọi K là tâm của đường tròn ngoại tiếp tứ giác BEFC.Tính diện tích hình tròn tâm K.B2: Cho ABC nhọn, đường tròn (O)...
Đọc tiếp

B1: Cho tam giác ABC vuông tại A, biết AB = 6cm, AC = 8cm. Vẽ đường cao AH, đường tròn tâm O đường kính AH cắt AB tại E và cắt AC tại điểm F.

a) Chứng minh tứ giác AEHF là hình chữ nhật

b) Chứng minh tứ giác BEFC nội tiếp

c) Gọi I là trung điểm của B
C.Chứng minh AI vuông góc với EF

d) Gọi K là tâm của đường tròn ngoại tiếp tứ giác BEF
C.Tính diện tích hình tròn tâm K.

B2: Cho ABC nhọn, đường tròn (O) đường kính BC cắt AB, AC lần lượt tại E và D, CE cắt BD tại H

a) Chứng minh tứ giác ADHE nội tiếp

b) AH cắt BC tại F. chứng minh FA là tia phân giác của góc DFE

c) EF cắt đường tròn tại K ( K khác E). chứng minh DK// AF

d) Cho biết góc BCD = 450 , BC = 4 cm. Tính diện tích tam giác ABC

B 3: cho đường tròn ( O) và điểm A ở ngoài (O)sao cho OA = 3R. vẽ các tiếp tuyến AB, AC với đường tròn (O) ( B và C là hai tiếp tuyến )

a) Chứng minh tứ giác OBAC nội tiếp

b) Qua B kẻ đường thẳng song song với AC cắt ( O) tại D ( khác B). đường thẳng AD cắt ( O) tại E. chứng minh AB2= AE. AD

c) Chứng minh tia đối của tia EC là tia phân giác của góc BEA

d) Tính diện tích tam giác BDC theo R

B4: Cho tam giác ABC nhọn, AB >AC, nội tiếp (O,R), hai đường cao AH, CF cắt nhau tại H

a) Chứng minh tứ giác BDHF nội tiếp? Xác định tâm của đường tròn ngoại tiếp tứ giác đó

b) Tia BH cắt AC tại E. chứng minh HE.HB= HF.HC

c) Vẽ đường kính AK của (O). chứng minh AK vuông góc với EF

d) Trường hợp góc KBC= 450, BC = R. tính diện tích tam giác AHK theo R

B5: Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn tâm O. Ba đương cao AE, BF, CK cắt nhau tại H. Tia AE, BF cắt đường tròn tâm O lần lượt tại I và J.

a) Chứng minh tứ giác AKHF nội tiếp đường tròn.

b) Chứng minh hai cung CI và CJ bằng nhau.

c) Chứng minh hai tam giác AFK và ABC đồng dạng với nhau

B6: Cho tam giác ABC nhọn nội tiếp đường tròn  ( O; R ),các đường cao BE, CF  .

a)Chứng minh tứ giác BFEC nội tiếp.

b)Chứng minh OA  vuông góc với EF.

3
27 tháng 5 2018

B1, a, Xét tứ giác AEHF có: góc AFH = 90o  ( góc nội tiếp chắn nửa đường tròn)

                                             góc AEH = 90o (góc nội tiếp chắn nửa đường tròn )

                                             Góc CAB = 90o ( tam giác ABC vuông tại A)

=> tứ giác AEHF là hcn(đpcm)

b, do AEHF là hcn => cũng là tứ giác nội tiếp => góc AEF  = góc AHF ( hia góc nội tiếp cùng chắn cung AF)

mà góc AHF = góc ACB ( cùng phụ với góc FHC)

=> góc AEF = góc ACB => theo góc ngoài tứ giác thì tứ giác BEFC là tứ giác nội tiếp (đpcm)

c,gọi M là giao điểm của AI và EF

ta có:góc AEF = góc ACB (c.m.t) (1)

do tam giác ABC vuông tại A và có I là trung điểm của cạng huyền CB => CBI=IB=IA

hay tam giác IAB cân tại I => góc MAE = góc ABC (2)

mà góc ACB + góc ABC + góc BAC = 180o (tổng 3 góc trong  một tam giác)

=>  ACB + góc ABC = 90o (3)

từ (1) (2) và (3) => góc AEF + góc MAE = 90o

=> góc AME = 90o (theo tổng 3 góc trong một tam giác)

hay AI uông góc với EF (đpcm)

1 tháng 4 2019

em moi lop 6 huhuhuhuhuhu

30 tháng 3 2022
Ai giúp em với😢
20 tháng 12 2019

Câu hỏi của AFK_VMC MOBLE - Toán lớp 10 - Học toán với OnlineMath

20 tháng 12 2019

Câu hỏi của AFK_VMC MOBLE - Toán lớp 10 - Học toán với OnlineMath

13 tháng 1 2018

a, Áp dụng hệ thức giữa cạnh và đường cao trong các tam giác vuông

∆AHC và ∆AHB ta có:

AE.AC =  A H 2 = AD.AB => ∆AHC  ~ ∆AHB(c.g.c)

b. Áp dụng hệ thức giữa cạnh và đường cao trong tam giác vuông ∆ABC tính được AH = 3cm => DE = 3cm

Trong ∆AHB vuông ta có:

tan A B C ^ = A H H B =>  A B C   ^ ≈ 56 0 , S A D E = 27 13 c m 2

 

 

 

29 tháng 5 2021

A B C H M N

a, Vì HM là đường cao => \(HM\perp AB\)=> ^HMA = 900

Vì HN là đường cao => \(HN\perp AC\)=> ^HNA = 900

Xét tứ giác AMHN có : 

^HMA + ^HNA = 900

mà ^HMA ; ^HNA đối nhau 

Vậy tứ giác AMHN nội tiếp

29 tháng 5 2021

b, Xét tam giác ABH vuông tại H, đường cao HM ta có : 

\(AH^2=AM.AB\)(1)

Xét tam giác ACH vuông tại H, đường cao HN ta có : 

\(AH^2=AN.AC\)(2) 

từ (1) ; (2) suy ra : \(AM.AB=AN.AC\Rightarrow\frac{AM}{AC}=\frac{AN}{AB}\)

Xét tam giác AMN và tam giác ACB ta có : 

^A chung 

\(\frac{AM}{AC}=\frac{AN}{AB}\)( cmt )

Vậy tam giác AMN ~ tam giác ACB ( c.g.c )