Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
A B C D M N P Q E F
a) Xét tam giác ABC có M là trung điểm của AB (gt) ,E là trung điểm của AC (gt)
\(\Rightarrow ME\)là đường trung bình tam giác ABC
\(\Rightarrow ME=\frac{1}{2}BC\left(tc\right)\left(1\right)\)
Xét tam giác ADC có E là trung điểm của AC (gt) ,P là trung điểm của DC (gt)
\(\Rightarrow PE\)là đường trung bình của tam giác ADC
\(\Rightarrow PE=\frac{1}{2}AD\left(tc\right)\left(2\right)\)
mà \(AD=BC\left(gt\right)\left(3\right)\)
Từ (1) , (2) và (3) \(\Rightarrow EM=PE\)
CMTT: \(PE=FP,FM=ME\)
\(\Rightarrow ME=EP=PF=FM\)
Xét tứ giác MEPF có:
\(ME=EP=PF=FM\left(cmt\right)\)
\(\Rightarrow MEPF\)là hình thoi ( dhnb)
b) Vì \(MEPF\)là hình thoi (cmt)
\(\Rightarrow FE\)giao với MP tại trung điểm mỗi đường (tc) (4)
Xét tam giác ADB có M là trung điểm của AB(gt) ,Q là trung điểm của AD (gt)
\(\Rightarrow MQ\)là đường trung bình của tam giác ADB
\(\Rightarrow MQ//DB,MQ=\frac{1}{2}DB\left(tc\right)\left(5\right)\)
Xét tam giác BDC có N là trung điểm của BC(gt) , P là trung điểm của DC(gt)
\(\Rightarrow NP\)là đường trung bình của tam giác BDC
\(\Rightarrow NP//DB,NP=\frac{1}{2}DB\left(tc\right)\left(6\right)\)
Từ (5) và (6) \(\Rightarrow MQ//PN,MQ=PN\)
Xét tứ giác MQPN có \(\Rightarrow MQ//PN,MQ=PN\)
\(\Rightarrow MQPN\)là hình bình hành (dhnb)
\(\Rightarrow MP\)giao QN tại trung điểm mỗi đường (tc) (7)
Từ (4) và (7) \(\Rightarrow MP,NQ,EF\)cắt nhau tại một điểm
c) Xét tam giác ABD có Q là trung điểm của AD (gt), F là trung điểm của BD(gt)
\(\Rightarrow QF\)là đường trung bình của tam giác ADB
\(\Rightarrow QF//AB\left(8\right)\)
CMTT: \(FN//CD\)và \(EN//AB\)
Mà Q,F,E,N thẳng hàng
\(\Rightarrow AB//CD\)
Vậy để Q,F,E,N thẳng hàng thì tứ giác ABCD phải thêm điều kiện \(AB//CD\)
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình
=>MN//BC và MN=BC/2
hay MN//BP và MN=BP
=>BMNP là hình bình hành
b: Xét tứ giác AKBH có
M là trung điểm của HK
M là trung điểm của AB
Do đó: AKBH là hình bình hành
mà \(\widehat{AHB}=90^0\)
nên AKBH là hình chữ nhật
c: Xét ΔABC có
M là trung điểm của AB
P là trung điểm của BC
Do đó: MP là đường trung bình
=>MP=AC/2(1)
Ta có: ΔAHC vuông tại H
mà HN là đường trung tuyến
nên HN=AC/2(2)
Từ (1) và (2) suy ra MP=HN
Xét tứ giác MNPH có MN//PH
nên MNPH là hình thang
mà MP=NH
nên MNPH là hình thang cân
Tham khảo
a) Xét Δ ABC ,có :
{AM=BMAN=NC{AM=BMAN=NC
⇔ MN là đường trung bình của Δ ABC
⇔ MN// BC mà góc B = góc C
⇔ BMNC là hình thang cân
b) Xét Δ ANE và Δ CNP ,có
AN=NC
NE=NP
góc ANE = góc NCP (dd)
⇔Δ ANE =Δ CNP (c.g.c)
⇔ góc AEN = góc CPN và AE=PC
⇔ AE//PC mà AE=PC
⇔ AEPC là hình bình hành (1)
Xét Δ ABP và Δ ACP , có
AB=AC
BP=PC
góc B = góc C
⇔ ΔABP = Δ ACP ( c.g.c)
⇔ góc APB = góc APC
mà góc APB + góc APC = 180 độ
⇔ góc APB = góc APC =90 độ (2)
từ (1) và (2)⇔ AEPC là hình chữ nhật
c) ta có , AEPC là hình chữ nhật
để AEPC là hình vuông thì Δ ABC có AP = PC
a) xét tứ giác ABDC có:
M là trung điểm của BC
M là trung điểm của AD (D đối xứng A qua M)
=> tứ giác ABDC là bình hành
xét hình bình hành ABDC có: \(\widehat{BAC}\)=90o
=> ABDC là hình chữ nhật
b) không hiểu lắm
[ Tự vẽ hình nha ]
a. Ta có: Q đối xứng với P qua M (gt)
=> PM = MQ
=> M là trung điểm của PQ
Xét tứ giác BPCQ , có:
M là trung điểm của PQ (cmt)
M là trung điểm của BC (gt)
=> BPCQ là hình bình hành (dhnb)
b. Ta có: M là trung điểm của BC (gt)
P là trung điểm của AC (gt)
=> MP là đường trung bình của \(\Delta\)BCA
=> MP // AB
Mà M \(\in\)QP
=> MQ // AB
Ta có: BPCQ là hình bình hành
=> BQ // PC
Mà P \(\in AC\)
=> BQ // AC
Xét tứ giác ABQP , có:
BQ // AC (cmt)
AB // QP (cmt)
=> ABQP là hình bình hành (dhnb)
Mà \(\widehat{A}=90^o\)
=> ABQP là hình chữ nhật (dhnb)