Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ABCDIE12
1) Xét hai tam giác ABI và EBI có:
AB = EB (gt)
B1ˆ=B2ˆ(gt)B1^=B2^(gt)
BI: cạnh chung
Vậy: ΔABI=ΔEBI(c−g−c)ΔABI=ΔEBI(c−g−c)
Suy ra: BAIˆ=BEIˆBAI^=BEI^ (hai góc tương ứng)
Mà BAIˆ=90oBAI^=90o
Do đó: BEIˆ=90oBEI^=90o
2) Xét hai tam giác vuông AID và EIC có:
IA = IE (ΔABI=ΔEBIΔABI=ΔEBI)
AIDˆ=EICˆAID^=EIC^ (đối đỉnh)
Vậy: ΔAID=ΔEIC(cgv−gn)ΔAID=ΔEIC(cgv−gn)
Suy ra: ID = IC (hai cạnh tương ứng)
Do đó: ΔIDCΔIDC cân tại I
3) Ta có: AB = EB (gt)
⇒ΔABE⇒ΔABE cân tại B
⇒⇒ BI là đường phân giác đồng thời là đường trung trực AE
hay BI ⊥⊥ AE (1)
Ta lại có: AB = EB (gt)
AD = EC (ΔAID=ΔEICΔAID=ΔEIC)
=> BD = BC
=> ΔBDCΔBDC cân tại B
=> BI là đường phân giác đồng thời là đường cao của tam giác
hay BI ⊥⊥ DC (2)
Từ (1) và (2) suy ra: AE // DC (đpcm)
a) Xét \(\Delta BAI\)và \(\Delta BAC\)có :
AB : cạnh chung
\(\widehat{BAI}=\widehat{BAC}\left(=90^0\right)\)
AC = AI ( gt )
\(\Rightarrow\Delta BAI=\Delta BAC\left(c-g-c\right)\)
\(\Rightarrow\widehat{ABI}=\widehat{ABC}\)( do 2 tam giác = nhau )
Mà \(\widehat{ABI}+\widehat{BAH}=90^0\)( tổng 3 góc = 1800 mà có 1 góc = 900 ( do AH\(\perp\)BI ) nên tổng 2 góc còn lại = 900 )
\(\Rightarrow\widehat{ABC}+\widehat{BAK}=90^0\)
\(\Rightarrow\widehat{BAH}=\widehat{BAK}\)
=> BA là đường phân giác của \(\widehat{HBK}\)
b) Ta có tam giác vuông ABK = CBA ( ch-gn ) => AB2 = BK . BC (1)
Ta có tam giác vuông ABH = IBA ( ch-gn ) => AB2 = BH . BI (2)
Từ (1) và (2) => BK . BC = BH . BI => HK // IC ( theo định lí Ta-let )
c) Gọi E là giao điểm của HK và BA
Có tam giác BHK cân ( BE là đường cao, phân giác ) => BH = BK
Ta có BA là đường trung trực của HK => HA = KA
Có tam giác vuông BHN = BKM ( gn-cgv ) => HN = KM
=> HA + AN = AK + AM => AN = AM => Tam giác AMN cân tại A
C1 :
a) Xét tam giác ABC có BC2=AB2+AC2( Định lý Py-ta-go)
Thay số:BC2=62+82
BC2=36+64=100
=>BC=10(cm)
b) Vì BI là phân giác => góc ABI= góc HBI= góc ABC / 2
Xét tam giác ABI vuông tại A và tam giác HBI vuông tại H có:
Bi chung, góc ABI= góc HBI ( cmt)
=> tam giác ABI= tam giác HBI (cạnh huyền - góc nhọn)
c)Gọi giao của AH và BI là K
Vì tam giác ABI=tam giác HBI (cmt)=> AB=HB( 2 cạnh tương ứng)
Xét tam giác AKB và tam giác HKB có:
AB=HB (cmt)
góc ABK=góc HBK(cmt)
BK chung
=. tam giác AKB= tam giác HKB ( c.g.c)
=> KB=KH ( 2 cạnh tương ứng)
=> K là trung điểm của BH (1)
Vì AB=HB (cmt) => tam giác ABH cân tại B=> AH là đường cao của tam giác ABH=> AH vuông góc với BK hay AH vuông góc với BI(2)
Từ (1) và (2) => BI là đường trung trực của đoạn thẳng AH
C2 :
a)ÁP DỤNG ĐỊNH LÝ PYTAGO THUẬN TRÒG TAM GIÁC ABC (BAC = 90 ĐỘ ) CÓ :
AB2 +AC2=BC2
=>52+72=BC2
=>BC2=25+49=74
HAY BC = CĂN BẬC HAI 74 =8.6 (CM)
b)XÉT HAI TAM GIÁC ABE (BAE = 90 ĐỘ ) VÀ TAM GIÁC DBE (BDE=90 ĐỘ ) CÓ :
AB=BD (GT)
BE LÀ CẠNH HUYỀN CHUNG
=>TAM GIÁC ABE = TAM GIÁC DBE (CẠNH HUYỀN _CẠNH GÓC VUÔNG )
C ) DO TAM GIÁC ABE = TAM GIÁC DBE (CÂU B )
=>AE=DE (2 CẠNH TƯƠNG ỨNG )
XÉT HAI TAM GIÁC AEF (EAF = 90 ĐỘ ) VÀ TAM GIÁC DEC (EDC = 90 ĐỘ ) CÓ :
E1 =E2
AE=DE (CMT)
=>TAM GIÁC AEF=TAM GIÁC DEC (CGV _ GÓC NHỌN KỀ )
=>ÈF=EC (2 CẠNH TƯƠNG ỨNG)
C1 :
Hình : tự vẽ
a )Vì CA=CB ( đề bài cho ) => tam giác ABC cân tại C
mà CI vuông góc vs AB => CI là đường cao của tam giác ABC
=> CI cũng là đường trung tuyến của tam giác ABC ( t/c tam giác cân )
=> IA=IB (đpcm)
C1 :
b) Có IA=IB ( cm phần a )
mà IA+IB = AB
IA + IA = 12 (cm)
=> IA = \(\frac{12}{2}=6\left(cm\right)\)
Xét tam giác vuông CIA có : CI2 + IA2 = CA2 ( Đ/l Py-ta -go )
CI2 + 62 = 102
CI2 = 102 - 62 = 64
=> CI = \(\sqrt{64}=8\left(cm\right)\)
Vậy CI ( hay IC ) = 8cm
B C D M H A E K N
a, Xét 2 tam giác vuông : ABM và DBM
BM chung
\(\widehat{ABM}=\widehat{DBM}\)( do BM là phân giác góc B )
\(\Rightarrow\Delta ABM=\Delta DBM\)( cạnh huyền - góc nhọn )
\(\Rightarrow BA=BD\)( 2 cạnh tương ứng )
b. Xét 2 tam giác vuông : ABC và DBE có :
BA = BD ( c/m ỏ câu a )
\(\widehat{B}\)chung
\(\Rightarrow\Delta ABC=\Delta DBE\)( cạnh góc vuông - góc nhọn )
c, Xét 2 tam giác vuông : AMK và DMH
AM = DM ( 2 cạnh tg ứng do ABM = DBM )
\(\widehat{AMK}=\widehat{DMH}\)( đối đỉnh )
\(\Rightarrow\Delta AMK=\Delta DMH\)( cạnh huyền - góc nhọn )
\(\Rightarrow MK=MH\)( 2 cạnh tg ứng )
Xét 2 tam giác vuông : MNK và MNH
MK = HM ( cmt )
MN chung
\(\Rightarrow\Delta MNK=\Delta MNH\)( cạnh huyền - góc vuông )
\(\Rightarrow\widehat{MNK}=\widehat{MNH}\)( 2 góc tg ứng )
=> NM là tia phân giác của \(\widehat{HMK}\)( đpcm ) (1)
d, Do AK = DH ( 2 cạnh tg ứng \(\Delta AMK=\Delta DMH\))
KN = HN ( 2 cạnh tg ứng \(\Delta MNK=\Delta MNH\))
\(\Rightarrow AN=AK+KN=DH+HN=DN\)
Xét 2 tam giác : ABN và DBN
AB = DB ( cmt )
BN chung
AN = BN ( cmt )
\(\Rightarrow\Delta ABN=\Delta DBN\left(c-c-c\right)\)
\(\Rightarrow\widehat{ANB}=\widehat{DNB}\)( 2 góc tg ứng )
=> NB là tia phân giác \(\widehat{AND}\)( 2 )
Từ (1)(2)
=> B , M , N thẳng hàng