Cho tam giác ABC vuông tại A (AB<AC), trung tuyến AM. Kẻ MD vuông góc AB, ME vu...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 2 2020

A B C D M N E

a, xét tứ giác  AMDN có : 

góc BAC = góc DMA = góc AND = 90 (gt)

=> AMDN là hình chữ nhật (dấu hiệu)

b,  AMDN là hình chữ nhật (câu a)

=> AN // DM hay AN // ME     (1)

AMDN là hình chữ nhật => AN = MD (tc)

MD = ME do E đối xứng cới D qua M (gt)

=> AN = ME   và (1)

=> AEMN là hình bình hành (dấu hiệu)

=> AN // ME (đn)

c, AMDN là hình chữ nhật (câu a)

để AMDN là hình vuông

<=> DN = DM (dh)               (2)

có D là trung điểm của BC (gt)

DN // AB do AMDN là hình chữ nhật

=> DN là đường trung bình của tam giác ABC 

=> DN = AB/2 (tc)

tương tự có DM = AC/2      và (2)

<=> AB/2 = AC/2

<=> AB = AC 

 tam giác ABC vuông tại A gt)

<=> tam giác ABC vuông cân tại A

vậy cần thêm đk tam giác ABC vuông để AMDN là hình vuông 

+ vì AMDN là hình vuông

=> MN _|_ AD (tc)

=> S AMDN = NM.AD : 2 (Đl)     

tam giác ABC vuông tại A có AD _|_ BC 

=> S ABC = AD.BC : 2   (đl)      (3)

BC = 2NM do NM là đường trung bình của tam giác ABC   và (3)

=> S ABC =  AD.2MN : 2

=> S ABC = 2S AMDN

a: Xét tứ giác AEDF có \(\widehat{AED}=\widehat{AFD}=\widehat{FAE}=90^0\)

nên AEDF là hình chữ nhật

b: Ta có: D và M đối xứng nhau qua AB

nên AB là đường trung trực của DM

=>AB vuông góc với DM tại trung điểm của DM

hay E là trung điểm của DM

Ta có: D và N đối xứng nhau qua AC

nên AClà đường trung trực của DN

=>AC vuông góc với DN tại trung điểm của DN

hay F là trung điểm của DN

Xét ΔABC có 

D là trung điểm của BC

DE//AC

DO đó: E là trung điểm của AB

Xét ΔABC có

D là trung điểm của BC

DF//AB

Do đó: F là trung điểm của CA

Xét tứ giác ADBM có 

E là trung điểm của AB

E là trung điểm của DM

Do đó: ADBM là hình bình hành

mà DA=DB

nên ADBM là hình thoi

Xét tứ giác ADCN có 

F là trung điểm của AC

F là trung điểm của DN

Do đó: ADCN là hình bình hành

mà DA=DC

nên ADCN là hình thoi

14 tháng 12 2017

a)  BD, CE là các đường trung tuyến của \(\Delta ABC\)

\(\Rightarrow\)DA = DC;   EA =EB

\(\Rightarrow\)ED là đường trung bình của \(\Delta ABC\)

\(\Rightarrow\)ED // BC;  ED = 1/2 BC

\(\Delta GBC\)có   MG = MB;   NG = NC

\(\Rightarrow\)MN là đường trung bình của \(\Delta GBC\)

\(\Rightarrow\)MN // BC;   MN = 1/2 BC

suy ra:  MN // ED;    MN = ED

\(\Rightarrow\)tứ giác MNDE là hình bình hành

c) MN = ED = 1/2 BC

\(\Rightarrow\)MN + ED = \(\frac{BC}{2}\)\(\frac{BC}{2}\)= BC

15 tháng 12 2014

Xin lỗi vì mình không biết cách để đưa hình lên đây nhưng bạn có thể tự vẽ mà!!

a) Vì tam giác ABC vuông nên đường trung tuyến ứng với cạnh huyền bằng một nửa cạnh huyền nên 

AM=\(\frac{BC}{2}=\frac{10}{2}=5\)

b) Tứ giác ADME là hình chữ nhật hay có 4 góc bằng nhau và bằng 90 độ

c) Giả sử AEMD là hình vuông

=> AE=AD

=>AC=AB

Vậy để AEMD là hình vuông thì tam giác ABC vuông cân

5 tháng 11 2017

ban kia lam dung roi do

k tui nha

thanks

a: BC=10cm

AM=5cm

b: Xét tứ giác AEMF có góc AEM=góc AFM=góc FAE=90 độ

nên AEMF là hình chữ nhật

c: Xét ΔCAB có

M là trung điểm của BC

MF//AB

Do đó F là trung điểm của AC

Xét tứ giác AMCD có

F là trung điểm chung của AC và MD

nên AMCD là hình bình hành

mà MA=MC

nên AMCD là hình thoi