K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔAMK vuông tại A và ΔCMH vuông tại C có 

MA=MC(M là trung điểm của AC)

\(\widehat{AMK}=\widehat{CMH}\)(hai góc đối đỉnh)

Do đó: ΔAMK=ΔCMH(cạnh góc vuông-góc nhọn kề)

Suy ra: AK=CH(hai cạnh tương ứng)

Xét tứ giác AKCH có 

AK//CH(\(\perp AC\))

AK=CH(cmt)

Do đó: AKCH là hình bình hành(Dấu hiệu nhận biết hình bình hành)

T
24 tháng 9

Em cần gấp quá nhờ thầy cô giải giúp em ạ


a: Xét ΔABC vuông tại A có \(cosABC=\frac{AB}{BC}\)

=>\(\frac{6}{BC}=\frac35=\frac{6}{10}\)

=>BC=10(cm)

ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(AC^2=10^2-6^2=100-36=64=8^2\)

=>AC=8(cm)

Xét ΔABC vuông tại A có AH là đường cao

nên \(BH\cdot BC=BA^2\)

=>\(BH=\frac{6^2}{10}=3,6\left(\operatorname{cm}\right)\)

b: Xét ΔAHB vuông tại H có HD là đường cao

nên \(AD\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HE là đường cao

nên \(AE\cdot AC=AH^2\left(2\right)\)

Từ (1),(2) suy ra \(AD\cdot AB=AE\cdot AC\)

c: ΔABC vuông tại A

mà AI là đường trung tuyến

nên IA=IC=IB

IA=IC

=>ΔIAC cân tại I

=>\(\hat{IAC}=\hat{ICA}=\hat{ACB}\)

Ta có: \(AD\cdot AB=AE\cdot AC\)

=>\(\frac{AD}{AC}=\frac{AE}{AB}\)

Xét ΔADE vuông tại A và ΔACB vuông tại A có

\(\frac{AD}{AC}=\frac{AE}{AB}\)

Do đó: ΔADE~ΔACB

=>\(\hat{AED}=\hat{ABC}\)

\(\hat{AED}+\hat{IAC}=\hat{ABC}+\hat{ACB}=90^0\)

=>AI⊥DE tại K

=>\(\hat{AKE}=90^0\)

a: Xét ΔABC vuông tại A có \(cosABC=\frac{AB}{BC}\)

=>\(\frac{6}{BC}=\frac35=\frac{6}{10}\)

=>BC=10(cm)

ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(AC^2=10^2-6^2=100-36=64=8^2\)

=>AC=8(cm)

Xét ΔABC vuông tại A có AH là đường cao

nên \(BH\cdot BC=BA^2\)

=>\(BH=\frac{6^2}{10}=3,6\left(\operatorname{cm}\right)\)

b: Xét ΔAHB vuông tại H có HD là đường cao

nên \(AD\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HE là đường cao

nên \(AE\cdot AC=AH^2\left(2\right)\)

Từ (1),(2) suy ra \(AD\cdot AB=AE\cdot AC\)

c: ΔABC vuông tại A

mà AI là đường trung tuyến

nên IA=IC=IB

IA=IC

=>ΔIAC cân tại I

=>\(\hat{IAC}=\hat{ICA}=\hat{ACB}\)

Ta có: \(AD\cdot AB=AE\cdot AC\)

=>\(\frac{AD}{AC}=\frac{AE}{AB}\)

Xét ΔADE vuông tại A và ΔACB vuông tại A có

\(\frac{AD}{AC}=\frac{AE}{AB}\)

Do đó: ΔADE~ΔACB

=>\(\hat{AED}=\hat{ABC}\)

\(\hat{AED}+\hat{IAC}=\hat{ABC}+\hat{ACB}=90^0\)

=>AI⊥DE tại K

=>\(\hat{AKE}=90^0\)

T
24 tháng 9

Cảm ơn thầy Thịnh ạ