Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c: Ta có: ΔAHC vuông tại H
mà HF là đường trung tuyến
nên HF=AF
mà AF=ME
nên HF=ME
Xét ΔABC có
E là trung điểm của AB
F là trung điểm của AC
Do đó: FE là đường trung bình
=>FE//BC
hay FE//MH
Xét tứ giác EFMH có FE//MH
nên EFMH là hình thang
mà FH=ME
nên EFMH là hình thang cân
d: Xét tứ giác MNAB có
MN//AB
MN=AB
Do đó: MNAB là hình bình hành
Suy ra: MA cắt NB tại trung điểm của mỗi đường(1)
Ta có: AEMF là hình chữ nhật
nên MA cắt EF tại trung điểm của mỗi đường(2)
Từ (1) và (2) suy ra AM,BN,FE đồng quy
(Hình bạn tự vẽ nha)
a ,
Tứ giác AEMF có góc A = góc AME = góc AFM = 90 độ nên là hình chữ nhật .
b ,
Xét tam giác vuông ABC có đường trung tuyến AM ứng với cạnh huyền BC nên AM = MC = MB
Vì N là điểm đối xứng của M qua F nên MN vuông góc với AC và MF=NF .
-> AC là đường trung trực của MN
->MC = NC , AM = AN (áp dụng tính chất của đường trung trực ) mà AM = MC nên MC=NC=AM=AN .
-> Tứ giác MANC là hình thoi.
c ,
Để hình chữ nhật AEMF là hình vuông thì AE = AF (1)
Vì AM=BM và ME vuông góc với AB nên ME là đường trung trực của AB .
-> AE = EB (2)
Vì tứ giác MANC là hình thoi nên AF=FC (3)
Từ (1),(2) và (3) suy ra BE = FC (4)
Từ (1) và (4) suy ra : AE + BE = AF + FC
hay AB = AC
-> Tam giác ABC là tam giác vuông cân .
Vậy để tứ giác AEMF là hình vuông thì tam giác ABC là tam giác vuông cân .
a: Xét tứ giác AEMF có
\(\widehat{AEM}=\widehat{AFM}=\widehat{FAE}=90^0\)
Do đó: AEMF là hình chữ nhật
b: Ta có: AEMF là hình chữ nhật
nên AM=EF
mà AM=BC/2
nên EF=BC/2
b ơi b có kiến thức cơ bản không để mình chỉ hướng dẫn b làm th chứ làm hết dài lắm
a, Vì \(\widehat{AEM}=\widehat{AFM}=\widehat{EAF}=90^0\) nên AEMF là hcn
b, Vì M là trung điểm BC, MF//AB(⊥AC) nên F là trung điểm AC
Mà F là trung điểm MN nên AMCN là hbh
c, Để AMCN là hcn thì \(\widehat{AMC}=90^0\) hay AM là đường cao tam giác ABC
Mà AM là trung tuyến nên để AMCN là hcn thì ABC vuông cân tại A
a: Xét ΔABC có
M là trung điểm của BC
ME//AC
=>E là trung điểm của AB
Xét ΔCAB có
M là trung điểm của BC
MF//AB
=>F là trung điểm của AC
Xét ΔABC có
E,F lần lượt là trung điểm của AB,AC
=>EF là đường trung bình
=>EF=BC/2 và EF//BC
b: ΔHAC vuông tại H có HF là đường trung tuyến
nên HF=AC/2
Xét ΔBAC có ME//AC
nên ME/AC=BM/BC=1/2
=>ME=1/2AC
=>ME=HF
Xét tứ giác MHEF có
MH//EF
ME=HF
=>MHEF là hình thang cân
a: Xét tứ giác AEMC có ME//AC
nên AEMC là hình thang
mà \(\widehat{CAE}=90^0\)
nên AEMC là hình thang vuông
b: Xét tứ giác AEMF có
\(\widehat{AEM}=\widehat{AFM}=\widehat{FAE}=90^0\)
Do đó: AEMF là hình chữ nhật