Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xét tứ giác AMIN có
^AMI = 90°
^MAN= 90°
^ANI = 90°
=> AMIN là hình chữ nhật
a, Xté tứ giác AMIN có :
BMI=MAN=INA=900
=> Tứ giác AMIN là hình chữ nhật
b, Xét ΔABC
có : BI=IC ( gt)
IN // AM ( gt )
=> AN=NC
mà IN=ND
=> Tứ giác ADCI là hình bình hành (1)
mà INC = 900 (2) Từ (1) và (2) => ADCI là hình thoi
c, Kẻ IQ // BK (QϵCD)
ΔBKC có :
BI = IC (gt)
IQ // BK (cách dựng )
cm tương tự : DK=KQ
=> DK=KQ=QC
=> DK/DC = 1/3
A) Tứ giác AMIN là hình chữ nhật. Vì i là trung điểm của BC, nên AM = AN (do đường cao cắt đường trung bình tại trung điểm). Vì iM vuông góc với AB và iN vuông góc với AC, nên AMIN là hình chữ nhật.
B) Lấy D sao cho N là trung điểm của Di. Ta cần chứng minh ADCi là hình thoi.
Vì N là trung điểm của Di, nên DN = Ni. Vì i là trung điểm của BC, nên BN = NC.
Ta có AN = AM (vì AMIN là hình chữ nhật).
Vì AB < AC, nên AM < AN. Khi đó, DN < Ni.
Vì DN = Ni và DN < Ni, nên DNi là đường cao của tam giác ADCi.
Vì DNi là đường cao và AN = AM, nên ADCi là hình thoi.
C) Đường thẳng BN cắt DC tại K. Ta cần chứng minh DK/DC = 1/3.
Vì BN là đường cao của tam giác ADC, nên DK/DC = BK/BC.
Vì BN cắt DC tại K, nên DK + KC = DC.
Vì N là trung điểm của BC, nên BK = KC.
Khi đó, DK/DC = BK/BC = BK/(BK + KC) = BK/(BK + DK) = 1/3 (vì BK = DK).
Vậy, DK/DC = 1/3.
a: Sửa đề: Cho tam giác ABC vuông tại A
Xét tứ giác AMIN có
\(\widehat{AMI}=\widehat{ANI}=\widehat{MAN}=90^0\)
=>AMIN là hình chữ nhật
b: Xét ΔABC có
I là trung điểm của bC
IN//AB
Do đó: N là trung điểm của AC
Xét tứ giác AICD có
N là trung điểm chung của AC và ID
=>AICD là hình bình hành
Hình bình hành AICD có AC\(\perp\)ID
nên AICD là hình thoi
a/ Xét t.g ABC có I là trung điểmBC ; IN // AB (cùng vuông góc vs AC)=> N là trung điểm AC
Xét tứ giác ADCI có
N là trđ AC
N là trđ DI
\(\widehat{ANI}=90^o\)
AC cắt DI tại N
=> ADCI là hình htoi
b/ Gọi O là giao điểm AI và BN
=> O là trọng tâm t/g ABC
=> OI = 1/3 AI = 1/2 DCt/g OIN= t/gKDN (g.c.g)
=> KD = IO = 1/3DC=> ĐPcm
c/ Theo Pythagoras ; AC = 16 cm
Cí IN = 1/2 AB ; IN = 1/2 ID=> ID = AB = 12
Có \(S_{ADCI}=\dfrac{1}{2}.ID.AC=8.12=96\left(cm^2\right)\)
ta có: