Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a, Xét tứ giác AEHF có : ^AEH = ^EAF = ^HFA = 900
Vậy tứ giác AEHF là hcn
=> AH = EF ( 2 đường chéo bằng nhau )
c, Theo Pytago tam giác ABC vuông tại A
\(AB=\sqrt{BC^2-AC^2}=3cm\)
SABC = 1/2 . AB . AC = 1/2 . 3 . 4 = 6 cm2
a) Xét tứ giác AEHF:
\(\widehat{EAF}=90^o;\widehat{AEH}=90^o;\widehat{AFH}=90^o\)
(Do tam giác ABC vuông tại A; HE và HF lần lượt vuông góc với AB và AC).
=> AEHF là hình chữ nhật (dhnb).
=> AH = EF (Tính chất 2 đường chéo của hình chữ nhật).
b) Ta có: FK = AF (gt).
Mà AF = EH (AEHF là hình chữ nhật).
=> AF = EH = FK.
Ta có: EH // AF (AEHF là hình chữ nhật).
Mà F thuộc AK (gt).
=> EH // FK.
Xét tứ giác EHKF:
EH // FK (cmt).
EH = FK (cmt).
=> EHKF là hình bình hành (dhnb).
c) Xét tam giác ABC vuông tại A:
Ta có: BC2 = AB2 + AC2 (Định lý Pytago).
Thay số: 52 = AB2 + 42.
=> AB2 = 9. => AB = 3.
Diện tích tam giác ABC vuông tại A:
\(\dfrac{1}{2}AB.AC=\dfrac{1}{2}.3.4=6\left(cm^2\right).\)

xin lỗi anh(chị) em mới lớp 6 không giải đc
thật lòng xin lỗi :(((((
((((((((🙄)))))))))___________bn ghi như mình đi thì bn sẽ có cái nịt 👉👈!!!

a, Vì HE ⊥ AB ; FA ⊥ AB => HE // FA (từ ⊥ đến // )
+, EA ⊥ AC ; HF ⊥ AC => EA // HF (từ ⊥ đến // )
Xét tứ giác AEHF có: HE // FA (cmt) ; EA // HF (cmt)
=> Tứ giác AEHF là hình bình hành (dhnb)
mà \(\hat{EAF} =90^0\)
=> Tứ giác AEHF là hình chữ nhật
=> AH = EF
b, Vì AEHF là hình chữ nhật (cmt)
=> EH//AF; EH = AF mà AF= FK (gt)
=> EH = FK
+, Xét tứ giác EHKF có: EH = FK (cmt)
EH // FK (do EH // AF; K ∈ AF)
=> Tứ giác EHKF là hình bình hành (dhnb)

a: Xét tứ giác AEHF có
\(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)
Do đó: AEHF là hình chữ nhật
b: Xét tứ giác DHEF có
HE//DF
HE=DF
Do đó: DHEF là hình bình hành

a: Xét tứ giác AEHF có
góc AEH=góc AFH=góc FAE=90 độ
=>AEHF là hình chữ nhật
b: FA=FD
FA=HE
=>HE=FD
Xét tứ giác HEFD có
HE//FD
HE=FD
=>HEFD là hình bình hành
c: Sửa đề: MP vuông góc AB
M đối xứng G qua AB
=>MG vuông góc AB tại trung điểm của MG
=>MG vuông góc AB tại P và P là trung điểm của MG
XétΔABC có
M là trung điểm của BC
MP//AC
=>P là trung điểm của AB
Xét tứ giác AMBG có
P là trung điểm chung của AB và MG
MA=MB
=>AMBG là hình thoi
M đối xứng K qua AC
=>MK vuông góc AC tại trung điểm của MK
=>Q là trung điểm của MK
Xét ΔABC có
M là trung điểm của BC
MQ//AB
=>Q là trung điểm của AC
Xét tứ giác AMCK có
Q là trung điểm chung của AC và MK
MA=MC
=>AMCK là hình thoi
a: Xét tứ giác AEHF có
\(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)
Do đó: AEHF là hình chữ nhật
b: Xét tứ giác EHKF có
EH//KF
EH=KF
Do đó: EHKF là hình bình hành
c: Ta có: AEHF là hình chữ nhật
mà O là giao điểm của hai đường chéo
nên O là trung điểm chung của AH và EF
Ta có: HEFK là hình bình hành
nên Hai đường chéo HF và KE cắt nhau tại trung điểm của mỗi đường
=>I là trung điểm chung của HF và KE
Xét ΔKEF có
I là trung điểm của KE
O là trung điểm của FE
Do đó: IO là đường trung bình
=>IO//KF
hay IO//AC