K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 5 2018

a)  Xét  \(\Delta AHC\)và   \(\Delta DHB\)có:

       \(\widehat{AHC}=\widehat{DHB}=90^0\)

      \(\widehat{HAC}=\widehat{HDB}\)(đối đỉnh)

suy ra:  \(\Delta AHC~\Delta DHB\) (g.g)

b)   Xét   \(\Delta ABC\)và    \(\Delta BDA\)có:

      \(\widehat{BAC}=\widehat{DBA}=90^0\)

     \(\widehat{ABC}=\widehat{BDA}\) (cùng phụ vs góc DBH)

suy ra:   \(\Delta ABC~\Delta BDA\)

\(\Rightarrow\)\(\frac{AB}{BD}=\frac{AC}{AB}\)

\(\Rightarrow\)\(AB^2=BD.AC\)

c)  \(\Delta HAC\)vuông tại  H  có  HN  là đường trung tuyến

\(\Rightarrow\)\(HN=AN=NC\)

\(\Rightarrow\)  \(\Delta NHC\)cân tại  N   \(\Rightarrow\) \(\widehat{NHC}=\widehat{NCH}\)

    Tương tự:   \(\widehat{MBH}=\widehat{MHB}\) 

mà   \(\widehat{MBH}=\widehat{HCN}\)(slt do BM // NC)

\(\Rightarrow\) \(\widehat{MHB}=\widehat{HCN}\)

mà   \(\widehat{HCN}=\widehat{NHC}\) (cmt)

\(\Rightarrow\)\(\widehat{MHB}=\widehat{NHC}\)

\(\Rightarrow\)\(\widehat{MHB}+\widehat{BHA}+\widehat{AHN}\)

    \(=\widehat{BHA}+\widehat{AHN}+\widehat{NHC}=180^0\)

Vậy  M, N, H thẳng hàng

a: XétΔABC vuông tại A và ΔHBA vuông tại H có

góc HBA chung

Do đó: ΔABC\(\sim\)ΔHBA

b: Xét ΔCAI vuông tại A và ΔCHK vuông tại H có

\(\widehat{ACI}=\widehat{HCK}\)

Do đó: ΔCAI\(\sim\)ΔCHK

SUy ra: CA/CH=CI/CK

hay \(CA\cdot CK=CI\cdot CH\)

Bài 23 : Cho tam giác ABC vuông tại A ( AB < AC ) . Gọi F là trung điểm của BC , qua F kẻ đường thẳng d vuông góc và BC , đường thẳng d cắt đường thẳng AB , AC lần lượt tại D và E. a ) Chứng minh : tam giác AED đồng dạng với tam giác PEC b ) Chứng minh , BF.FC = DF.EF  c ) Tính BC biết DE = 5cm , EF = 4cm . d ) Gọi K là giao điểm của BE và DC , đường thẳng FK cắt AC tại I. Chứng minh : AC. EI = AE . IC   .Bài 26...
Đọc tiếp

Bài 23 : Cho tam giác ABC vuông tại A ( AB < AC ) . Gọi F là trung điểm của BC , qua F kẻ đường thẳng d vuông góc và BC , đường thẳng d cắt đường thẳng AB , AC lần lượt tại D và E. 

a ) Chứng minh : tam giác AED đồng dạng với tam giác PEC 

b ) Chứng minh , BF.FC = DF.EF 

 c ) Tính BC biết DE = 5cm , EF = 4cm 

. d ) Gọi K là giao điểm của BE và DC , đường thẳng FK cắt AC tại I. Chứng minh : AC. EI = AE . IC

 

 

 .Bài 26 : Cho  tam giác ABC vuông tại A , đường cao AH . Gọi E , F lần lượt là chân đường vuông góc kẻ tử H đến AB , AC 

a ) Chứng minh : AH = EF 

b ) Chứng minh : AB^2 = BH.BC 

c ) Chứng minh :tam giác HEF đồng dạng vớ itam giác  ABC 

d ) Kẻ tìa Bx vuông góc BC , Bx cắt đường thẳng AC tại K. Gọi O là giao điểm của EF và AH . Chứng minh : CO đi qua trung điểm của KB . 

 

 

Bài 27 : Cho tam giác ABC có góc A = 90 độ ; AB = 15cm , AC = 20cm , đường phân giác BD cắt đường cao AH tại K. 

a ) Tính BC , AD 

b ) Chứng minh tam giác AHB đồng dạng với tam giác CAB , 

c ) Chứng minh : BH.BD = BK.BA , d ) Gọi M là trung điểm của KD . Kẻ tia Bx song song với AM . Tia Bx cắt tia AH tại J , Chứng minh : HK.AJ = AK.HJ .

3
2 tháng 9 2020

Bài 26 :                                             Bài giải

a. Do AB⊥AC,HE⊥AB,HF⊥AC

⇒EAF^=AEH^=AFH^=90o

→◊AEHF là hình chữ nhật

2 tháng 9 2020

Bài 27 :                                                                  Bài giải

Hình : 

A B C D H K M x J

Còn bài giải tham khảo : Câu hỏi của nguyễn nhật trang nhung - Toán lớp 8 - Học toán với OnlineMath

Câu hỏi của nguyễn nhật trang nhung - Toán lớp 8 - Học toán với OnlineMath

15 tháng 12 2021

sai hay đúng?

26 tháng 6 2020

c) Chứng minh M, H, N thẳng hàng.

Từ câu b ta có : HA. HB = HC. HD \(\rightarrow\frac{HA}{HC}=\frac{HD}{HB}\)

Xét \(\Delta AHC\)và \(\Delta DHB\)

có: \(\frac{HA}{HC}=\frac{HD}{HB}\)(cmt)

       \(\widehat{AHC}=\widehat{DHB}\)(đối đỉnh hay cùng = 90 độ)

\(\Rightarrow\Delta AHC\)đồng dạng với \(\Delta DHB\)

\(\Rightarrow\frac{AC}{BD}=\frac{HC}{HB}\)

mà \(\frac{AC}{BD}=\frac{\frac{1}{3}AC}{\frac{1}{3}BD}=\frac{NC}{BM}\)

\(\Rightarrow\frac{HC}{HB}=\frac{NC}{BM}\)

Kết hợp với \(\widehat{NCH}=\widehat{MBH}\)(SLT do AC//BD theo câu b)

\(\Rightarrow\Delta NCH\)đồng dạng với \(\Delta MBH\)

\(\Rightarrow\widehat{CHN}=\widehat{BHM}\)

mà \(\widehat{CHN}+\widehat{NHB}=180\)độ

\(\Rightarrow\widehat{BHM}+\widehat{NHB}=180\)độ

\(\Rightarrow\)M, H, N thẳng hàng.

9 tháng 4 2021

góc BHM đối đỉnh với góc HNC nên bằng nhau đc không ạ

 

1 tháng 4 2021

a) Xét tam giác AHD và tam giác CKD có:

AHD=CKD=90

\(D_1=D_2\) (2 góc đối đỉnh)

=> tam giác AHD đồng dạng tam giác CKD (g-g)

=> đpcm

1 tháng 4 2021

b) Xét tam giác AHB và tam giác CKB có

AHB=BKC=90

ABD=DBC ( BD là tia phân giác ABC)

=> Tam giác AHB đồng dạng CKB (g-g)

=> \(\dfrac{AB}{HB}=\dfrac{BC}{KB}=>AB.KB=BC.HB\)

30 tháng 12 2021

a: Xét ΔHAB có 

M là trung điểm của HA

N là trung điểm của HB

Do đó: MN là đường trung bình

=>MN//AB

hay ABNM là hình thang

1: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

\(\widehat{ABC}\) chung

Do đó: ΔABC~ΔHBA

2: Sửa đề: \(HA\cdot HB=HC\cdot HD\)

Xét ΔHAC vuông tại H và ΔHDB vuông tại H có

\(\widehat{HAC}=\widehat{HDB}\)(hai góc so le trong, BD//AC)

Do đó: ΔHAC~ΔHDB

=>\(\dfrac{HA}{HD}=\dfrac{HC}{HB}\)

=>\(HA\cdot HB=HD\cdot HC\)

Xét ΔABC vuông tại A và ΔBDA vuông tại B có

\(\widehat{ABC}=\widehat{BDA}\left(=90^0-\widehat{HAB}\right)\)

Do đó: ΔABC~ΔBDA

=>\(\dfrac{AC}{BA}=\dfrac{AB}{BD}\)

=>\(AB^2=AC\cdot BD\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AB^2=BH\cdot BC\)

=>\(AC\cdot BD=BH\cdot BC\)