Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Học sinh tự chứng minh
b, Học sinh tự chứng minh
c, Học sinh tự chứng minh
d, Chú ý: B I A ^ = B M A ^ , B M C ^ = B K C ^
=> Tứ giác BICK nội tiếp đường tròn (T), mà (T) cũng là đường tròn ngoại tiếp DBIK. Trong (T), dây BC không đổi mà đường kính của (T) ≥ BC nên đường kính nhỏ nhất bằng BC
Dấu "=" xảy ra <=> B I C ^ = 90 0 => I ≡ A => MA
a: ΔBAD cân tại B
mà BH là đường cao
nên BH là phân giác của góc ABD
XétΔCAB và ΔCDB có
BA=BD
\(\widehat{ABC}=\widehat{DBC}\)
BC chung
Do đó: ΔCAB=ΔCDB
=>\(\widehat{CAB}=\widehat{CDB}=90^0\)
=>CD là tiếp tuyến của (B;BA)
b: I đối xứng B qua AH
=>AH là đường trung trực của BI
=>AH\(\perp\)BI tại trung điểm của BI
mà AH\(\perp\)BC
và BC,BI có điểm chung là B
nên B,I,C thẳng hàng
AH\(\perp\)BI tại trung điểm của BI
=>AH\(\perp\)BC tại trung điểm của BI
mà AH\(\perp\)BC tại H
nên H là trung điểm của BI
ΔBAD cân tại B
mà BH là đường cao
nên H là trung điểm của AD
Xét tứ giác ABDI có
H là trung điểm chung của AD và BI
nên ABDI là hình bình hành
Hình bình hành ABDI có BA=BD
nên ABDI là hình thoi
=>ID//AB
mà AB\(\perp\)AC
nên ID\(\perp\)AC
Xét ΔCAD có
CH,DI là đường cao
CH cắt DI tại I
Do đó: I là trực tâm của ΔCAD
=>AI\(\perp\)CD tại E
Gọi K là trung điểm của AC
=>K là tâm của đường tròn đường kính AC
Xét tứ giác AHEC có \(\widehat{AHC}=\widehat{AEC}=90^0\)
nên AHEC là tứ giác nội tiếp đường tròn đường kính AC
=>A,H,E,C cùng thuộc đường tròn tâm K, đường kính AC
Xét (K) có
AC là đường kính
AB\(\perp\)AC tại A
Do đó: AB là tiếp tuyến của (K)