Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a, Học sinh tự chứng minh
b, Học sinh tự chứng minh
c, Học sinh tự chứng minh
d, Chú ý: B I A ^ = B M A ^ , B M C ^ = B K C ^
=> Tứ giác BICK nội tiếp đường tròn (T), mà (T) cũng là đường tròn ngoại tiếp DBIK. Trong (T), dây BC không đổi mà đường kính của (T) ≥ BC nên đường kính nhỏ nhất bằng BC
Dấu "=" xảy ra <=> B I C ^ = 90 0 => I ≡ A => MA
![](https://rs.olm.vn/images/avt/0.png?1311)
a: ΔBAD cân tại B
mà BH là đường cao
nên BH là phân giác của góc ABD
XétΔCAB và ΔCDB có
BA=BD
\(\widehat{ABC}=\widehat{DBC}\)
BC chung
Do đó: ΔCAB=ΔCDB
=>\(\widehat{CAB}=\widehat{CDB}=90^0\)
=>CD là tiếp tuyến của (B;BA)
b: I đối xứng B qua AH
=>AH là đường trung trực của BI
=>AH\(\perp\)BI tại trung điểm của BI
mà AH\(\perp\)BC
và BC,BI có điểm chung là B
nên B,I,C thẳng hàng
AH\(\perp\)BI tại trung điểm của BI
=>AH\(\perp\)BC tại trung điểm của BI
mà AH\(\perp\)BC tại H
nên H là trung điểm của BI
ΔBAD cân tại B
mà BH là đường cao
nên H là trung điểm của AD
Xét tứ giác ABDI có
H là trung điểm chung của AD và BI
nên ABDI là hình bình hành
Hình bình hành ABDI có BA=BD
nên ABDI là hình thoi
=>ID//AB
mà AB\(\perp\)AC
nên ID\(\perp\)AC
Xét ΔCAD có
CH,DI là đường cao
CH cắt DI tại I
Do đó: I là trực tâm của ΔCAD
=>AI\(\perp\)CD tại E
Gọi K là trung điểm của AC
=>K là tâm của đường tròn đường kính AC
Xét tứ giác AHEC có \(\widehat{AHC}=\widehat{AEC}=90^0\)
nên AHEC là tứ giác nội tiếp đường tròn đường kính AC
=>A,H,E,C cùng thuộc đường tròn tâm K, đường kính AC
Xét (K) có
AC là đường kính
AB\(\perp\)AC tại A
Do đó: AB là tiếp tuyến của (K)