K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 6 2020

A C B K D F E 1 2

a, Xét \(\Delta ABC\) và ∠ ta có :

∠CAB = ∠AEC = 90 o

∠C chung

\(\Delta ABC\) ~ \(\Delta EAC\) ( g - g )

b, xét \(\Delta FEB\)\(\Delta DAB\) ta có :

∠DAB = ∠FEB = 90o

∠B1 = ∠B2 (BD là pg )

\(\Delta FEB\) ~ \(\Delta DAB\) ( g - g )

\(\frac{AD}{BD}=\frac{EF}{BF}\rightarrow BD.EF=BF.AD\) ( đpcm)

31 tháng 3 2019

A B C D E 6 H

a) BC = \(\sqrt{AB^2+AC^2}\)\(\sqrt{6^2+8^2}\)\(\sqrt{100}\)= 10 (theo định lí Pythagoras)

\(\Delta\)ABC có BD là phân giác => \(\frac{AD}{AB}\)\(\frac{CD}{BC}\)\(\frac{AD}{DC}\)\(\frac{AB}{BC}\)\(\frac{6}{10}\)\(\frac{3}{5}\).

b) Ta có : \(\widehat{ABE}\)\(\widehat{EBC}\)(BD là phân giác)

=> \(\Delta ABD\)\(\Delta EBC\)(gg)

=> \(\frac{BD}{BC}\)\(\frac{AD}{EC}\)<=>  BD.EC = AD.BC (đpcm).

c) Ta có : \(\Delta CHE\)\(\Delta CEB\)( 2 tam giác vuông có chung góc C )

=> \(\frac{CH}{CE}\)\(\frac{CE}{CB}\)<=>  CH.CB = CE2                                                     (1)

                \(\Delta CDE\)\(\Delta BDA\)(gg  (2 góc đối đỉnh))

                 \(\Delta BDA~\Delta BCE\) (câu b))

=> \(\Delta CDE~\Delta BCE\)

=> \(\frac{CE}{BE}\)\(\frac{DE}{CE}\)<=> BE.DE = CE2                                                        (2)

Từ (1) và (2) => CH.CB = ED.EB (đpcm).

a: \(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)

b: Xét ΔABC vuông tại A và ΔEAC vuông tại E có

góc C chung

=>ΔABC đồng dạng với ΔEAC

EA=3*4/5=2,4cm

d: BF là phân giác

=>AF/AB=FE/EB

=>AF/3=FE/1,8

=>AF/5=FE/3

mà AF+FE=2,4

nên AF/5=FE/3=2,4/8=0,3

=>AF=1,5cm

30 tháng 3 2022

Cho tam giác ABC vuông tại A, AB= 30cm, AC= 40cm, đường cao AE, phân giác BD. F là giao điểm của AE và BD.

Cm: tam giác  ABC đồng dạng với tam giác EAC. Tính AE

a: Xét ΔABC vuông tại A và ΔEAC vuông tại E có

góc C chung

=>ΔABC đồng dạng với ΔEAC

BC=căn 30^2+40^2=50cm

AE=30*40/50=24cm

c: góc ADF=90 độ-góc ABD

góc AFD=góc BFE=90 độ-góc DBC

mà góc ABD=góc DBC

nên góc ADF=góc AFD

=>AD=AF