Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D E 6 H
a) BC = \(\sqrt{AB^2+AC^2}\)= \(\sqrt{6^2+8^2}\)= \(\sqrt{100}\)= 10 (theo định lí Pythagoras)
\(\Delta\)ABC có BD là phân giác => \(\frac{AD}{AB}\)= \(\frac{CD}{BC}\)= \(\frac{AD}{DC}\)= \(\frac{AB}{BC}\)= \(\frac{6}{10}\)= \(\frac{3}{5}\).
b) Ta có : \(\widehat{ABE}\)= \(\widehat{EBC}\)(BD là phân giác)
=> \(\Delta ABD\)~ \(\Delta EBC\)(gg)
=> \(\frac{BD}{BC}\)= \(\frac{AD}{EC}\)<=> BD.EC = AD.BC (đpcm).
c) Ta có : \(\Delta CHE\)~ \(\Delta CEB\)( 2 tam giác vuông có chung góc C )
=> \(\frac{CH}{CE}\)= \(\frac{CE}{CB}\)<=> CH.CB = CE2 (1)
\(\Delta CDE\)~ \(\Delta BDA\)(gg (2 góc đối đỉnh))
\(\Delta BDA~\Delta BCE\) (câu b))
=> \(\Delta CDE~\Delta BCE\)
=> \(\frac{CE}{BE}\)= \(\frac{DE}{CE}\)<=> BE.DE = CE2 (2)
Từ (1) và (2) => CH.CB = ED.EB (đpcm).
a: \(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)
b: Xét ΔABC vuông tại A và ΔEAC vuông tại E có
góc C chung
=>ΔABC đồng dạng với ΔEAC
EA=3*4/5=2,4cm
d: BF là phân giác
=>AF/AB=FE/EB
=>AF/3=FE/1,8
=>AF/5=FE/3
mà AF+FE=2,4
nên AF/5=FE/3=2,4/8=0,3
=>AF=1,5cm
Cho tam giác ABC vuông tại A, AB= 30cm, AC= 40cm, đường cao AE, phân giác BD. F là giao điểm của AE và BD.
Cm: tam giác ABC đồng dạng với tam giác EAC. Tính AE
a: Xét ΔABC vuông tại A và ΔEAC vuông tại E có
góc C chung
=>ΔABC đồng dạng với ΔEAC
BC=căn 30^2+40^2=50cm
AE=30*40/50=24cm
c: góc ADF=90 độ-góc ABD
góc AFD=góc BFE=90 độ-góc DBC
mà góc ABD=góc DBC
nên góc ADF=góc AFD
=>AD=AF
A C B K D F E 1 2
a, Xét \(\Delta ABC\) và ∠ ta có :
∠CAB = ∠AEC = 90 o
∠C chung
⇒ \(\Delta ABC\) ~ \(\Delta EAC\) ( g - g )
b, xét \(\Delta FEB\) và \(\Delta DAB\) ta có :
∠DAB = ∠FEB = 90o
∠B1 = ∠B2 (BD là pg )
⇒ \(\Delta FEB\) ~ \(\Delta DAB\) ( g - g )
⇒ \(\frac{AD}{BD}=\frac{EF}{BF}\rightarrow BD.EF=BF.AD\) ( đpcm)