K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: Xét tứ giác ABCK có \(\widehat{BAC}=\widehat{BKC}=90^0\)

nên ABCK là tứ giác nội tiếp

2:

Xét ΔCKB vuông tại K và ΔCEF vuông tại E có

\(\widehat{KCB}\) chung

Do đó: ΔCKB~ΔCEF

=>\(\dfrac{CK}{CE}=\dfrac{CB}{CF}\)

=>\(CK\cdot CF=CB\cdot CE\)

Xét ΔACB vuông tại A có AE là đường cao

nên \(CE\cdot CB=CA^2\)

=>\(CA^2=CK\cdot CF\)

=>\(\dfrac{CA}{CF}=\dfrac{CK}{CA}\)

Xét ΔCAK và ΔCFA có

\(\dfrac{CA}{CF}=\dfrac{CK}{CA}\)

\(\widehat{ACK}\) chung

Do đó: ΔCAK~ΔCFA

1. Chứng minh tứ giác ABCK nội tiếp:
Ta có ∆ABC vuông tại A, do đó góc ACB là góc vuông.
Gọi H là trực tâm của ∆BFC, suy ra BH ⊥ FC.
Vì A là trung điểm của EF, AE = EF và AE ⊥ BC (vì AE là đường cao), suy ra E là trung điểm của BC.
Từ đó, BK cũng là đường cao của ∆BFC, suy ra BK ⊥ FC.
Vậy tứ giác ABCK có hai đường chéo AC và BK cùng vuông góc với cạnh BC, suy ra tứ giác ABCK nội tiếp đường tròn đường kính BC.
2. Chứng minh tam giác CAK đồng dạng với tam giác CFA:
Vì tứ giác ABCK nội tiếp, suy ra góc BAC = góc BKC (cùng chắn cung BC).
Góc BAC là góc vuông (vì ∆ABC vuông tại A), suy ra góc BKC cũng là góc vuông.
Do đó, ∆BKC vuông tại K.
Vì ∆ABC vuông tại A, suy ra góc ABC + góc BAC = 90°.
Tương tự, trong ∆BFC vuông tại F, ta có góc BFC + góc FBC = 90°.
Vì E là trung điểm của BC, suy ra BE = EC và góc ABC = góc FBC.
Từ đó, góc BAC = góc BKC và góc ABC = góc FBC, suy ra ∆CAK đồng dạng với ∆CFA theo trường hợp góc-góc.
3. Chứng minh H là trung điểm của AE:
Vì H là trực tâm của ∆BFC, suy ra BH ⊥ FC và CH ⊥ BF.
Vì BK là đường cao của ∆BFC, suy ra BK ⊥ FC.
Vì E là trung điểm của BC và AE ⊥ BC, suy ra AE là đường trung bình của ∆BFC.
Đường trung bình trong tam giác vuông cũng là đường cao, suy ra H là giao điểm của AE và BK.
Do đó, H chia AE thành hai đoạn bằng nhau, suy ra H là trung điểm của AE.

B1: Cho tam giác ABC vuông tại A, biết AB = 6cm, AC = 8cm. Vẽ đường cao AH, đường tròn tâm O đường kính AH cắt AB tại E và cắt AC tại điểm F.a) Chứng minh tứ giác AEHF là hình chữ nhậtb) Chứng minh tứ giác BEFC nội tiếpc) Gọi I là trung điểm của BC.Chứng minh AI vuông góc với EFd) Gọi K là tâm của đường tròn ngoại tiếp tứ giác BEFC.Tính diện tích hình tròn tâm K.B2: Cho ABC nhọn, đường tròn (O)...
Đọc tiếp

B1: Cho tam giác ABC vuông tại A, biết AB = 6cm, AC = 8cm. Vẽ đường cao AH, đường tròn tâm O đường kính AH cắt AB tại E và cắt AC tại điểm F.

a) Chứng minh tứ giác AEHF là hình chữ nhật

b) Chứng minh tứ giác BEFC nội tiếp

c) Gọi I là trung điểm của B
C.Chứng minh AI vuông góc với EF

d) Gọi K là tâm của đường tròn ngoại tiếp tứ giác BEF
C.Tính diện tích hình tròn tâm K.

B2: Cho ABC nhọn, đường tròn (O) đường kính BC cắt AB, AC lần lượt tại E và D, CE cắt BD tại H

a) Chứng minh tứ giác ADHE nội tiếp

b) AH cắt BC tại F. chứng minh FA là tia phân giác của góc DFE

c) EF cắt đường tròn tại K ( K khác E). chứng minh DK// AF

d) Cho biết góc BCD = 450 , BC = 4 cm. Tính diện tích tam giác ABC

B 3: cho đường tròn ( O) và điểm A ở ngoài (O)sao cho OA = 3R. vẽ các tiếp tuyến AB, AC với đường tròn (O) ( B và C là hai tiếp tuyến )

a) Chứng minh tứ giác OBAC nội tiếp

b) Qua B kẻ đường thẳng song song với AC cắt ( O) tại D ( khác B). đường thẳng AD cắt ( O) tại E. chứng minh AB2= AE. AD

c) Chứng minh tia đối của tia EC là tia phân giác của góc BEA

d) Tính diện tích tam giác BDC theo R

B4: Cho tam giác ABC nhọn, AB >AC, nội tiếp (O,R), hai đường cao AH, CF cắt nhau tại H

a) Chứng minh tứ giác BDHF nội tiếp? Xác định tâm của đường tròn ngoại tiếp tứ giác đó

b) Tia BH cắt AC tại E. chứng minh HE.HB= HF.HC

c) Vẽ đường kính AK của (O). chứng minh AK vuông góc với EF

d) Trường hợp góc KBC= 450, BC = R. tính diện tích tam giác AHK theo R

B5: Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn tâm O. Ba đương cao AE, BF, CK cắt nhau tại H. Tia AE, BF cắt đường tròn tâm O lần lượt tại I và J.

a) Chứng minh tứ giác AKHF nội tiếp đường tròn.

b) Chứng minh hai cung CI và CJ bằng nhau.

c) Chứng minh hai tam giác AFK và ABC đồng dạng với nhau

B6: Cho tam giác ABC nhọn nội tiếp đường tròn  ( O; R ),các đường cao BE, CF  .

a)Chứng minh tứ giác BFEC nội tiếp.

b)Chứng minh OA  vuông góc với EF.

3
27 tháng 5 2018

B1, a, Xét tứ giác AEHF có: góc AFH = 90o  ( góc nội tiếp chắn nửa đường tròn)

                                             góc AEH = 90o (góc nội tiếp chắn nửa đường tròn )

                                             Góc CAB = 90o ( tam giác ABC vuông tại A)

=> tứ giác AEHF là hcn(đpcm)

b, do AEHF là hcn => cũng là tứ giác nội tiếp => góc AEF  = góc AHF ( hia góc nội tiếp cùng chắn cung AF)

mà góc AHF = góc ACB ( cùng phụ với góc FHC)

=> góc AEF = góc ACB => theo góc ngoài tứ giác thì tứ giác BEFC là tứ giác nội tiếp (đpcm)

c,gọi M là giao điểm của AI và EF

ta có:góc AEF = góc ACB (c.m.t) (1)

do tam giác ABC vuông tại A và có I là trung điểm của cạng huyền CB => CBI=IB=IA

hay tam giác IAB cân tại I => góc MAE = góc ABC (2)

mà góc ACB + góc ABC + góc BAC = 180o (tổng 3 góc trong  một tam giác)

=>  ACB + góc ABC = 90o (3)

từ (1) (2) và (3) => góc AEF + góc MAE = 90o

=> góc AME = 90o (theo tổng 3 góc trong một tam giác)

hay AI uông góc với EF (đpcm)

1 tháng 4 2019

em moi lop 6 huhuhuhuhuhu

15 tháng 4 2021
Mình đã làm được câu 1,2,3 rồi.Nhờ mọi người giúp câu 4 nha.
30 tháng 3 2022
Ai giúp em với😢
Một số bài toán hay về tâm nội tiếp:Bài 1: Cho tam giác ABC nội tiếp (O), hai điểm K,L di chuyển trên (O) (K thuộc cung AB không chứa C, L thuộc cung AC không chứa B) thỏa mãn KL song song với BC. Gọi U và V lần lượt là tâm nội tiếp các tam giác AKB,ALC. Chứng minh rằng tâm của (UAV) thuộc đường thẳng cố định.Bài 2: Cho tứ giác lồi ABCD có AD = BC. AC cắt BD tại I. Gọi S,T là tâm nội tiếp các tam...
Đọc tiếp

Một số bài toán hay về tâm nội tiếp:

Bài 1: Cho tam giác ABC nội tiếp (O), hai điểm K,L di chuyển trên (O) (K thuộc cung AB không chứa C, L thuộc cung AC không chứa B) thỏa mãn KL song song với BC. Gọi U và V lần lượt là tâm nội tiếp các tam giác AKB,ALC. Chứng minh rằng tâm của (UAV) thuộc đường thẳng cố định.

Bài 2: Cho tứ giác lồi ABCD có AD = BC. AC cắt BD tại I. Gọi S,T là tâm nội tiếp các tam giác AID,BIC. M,N là trung điểm các cạnh AB,CD. Chứng minh rằng MN chia đôi ST.

Bài 3: Cho tam giác ABC, đường tròn (I) nội tiếp tam giác ABC tiếp xúc BC,CA,AB tại D,E,F. Kẻ DH vuông góc EF tại H, G là trung điểm DH. Gọi K là trực tâm tam giác BIC. Chứng minh rằng GK chia đôi EF.

Bài 4: Cho tam giác ABC ngoại tiếp (I), (I) tiếp xúc với BC,CA,AB tại D,E,F. Gọi AI cắt DE,DF tại K,L; H là chân đường cao hạ từ A của tam giác ABC, M là trung điểm BC. Chứng minh rằng bốn điểm H,K,L,M cùng thuộc một đường tròn có tâm nằm trên (Euler) của tam giác ABC.

1
14 tháng 3 2020

chị gisp em bài này

Câu 8:

a) Xét tứ giác BFEC có 

\(\widehat{BFC}\) và \(\widehat{BEC}\) là hai góc cùng nhìn cạnh BC
\(\widehat{BFC}=\widehat{BEC}\left(=90^0\right)\)

Do đó: BFEC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

1 tháng 4 2021

Nhờ các bạn giúp giải tiếp câu b và c. Thanks

 

18 tháng 12 2019

a, HS tự chứng minh

b, HS tự chứng minh

c, HS tự chứng minh

d, ∆MIH:∆MAB

=>  M H M B = I H A B = 2 E H 2 F B = E H F B

=> ∆MHE:∆MBF

=>  M F A ^ = M E K ^  (cùng bù với hai góc bằng nhau)

=> KMEF nội tiếp =>  M E F ^ = 90 0

a: góc BEC=góc BDC=90 độ

=>BEDC nội tiếp

b: góc HBC+góc HCB=90 độ-góc ABC+90 độ-góc ACB

=góc BAC

=>góc BHC=180 độ-góc BAC

=>góc BHC+góc BAC=180 độ

H đối xứng M qua BC

=>BH=BM và CH=CM

Xét ΔBHC và ΔBMC có

BH=BM

HC=MC

BC chung

=>ΔBHC=ΔBMC

=>góc BMC=góc BHC

=>góc BMC+góc BAC=180 độ

=>ABMC nội tiếp

c: Xét tứ giác BHCN có

BC cắt HN tại trung điểm của mỗi đường

=>BHCN là hìnhbình hành

=>góc BHC=góc BNC

=>góc BNC+góc bAC=180 độ

=>ABNC nội tiếp

30 tháng 3 2023

Đường cao ec ko phải ic nha mn

 

a: góc BEC=góc BDC=90 độ

=>BEDC nội tiêp

b: Xet ΔAEC vuông tại E và ΔADB vuông tại D có

góc EAC chung

=>ΔAEC đồng dạng với ΔADB

=>AE/AD=AC/AB

=>AE*AB=AD*AC

c: góc DEH=goc IAC

góc IEC=góc DBC

góc IAC=góc DBC

=>góc DEH=góc IEC

=>EH là phân giác của góc DEI