K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 9 2021

áp dụng định lí pytago cho tam giác abc vuông tại a

\(BC^2=\sqrt{AB^2+AC^2}=3\sqrt{34}\)

do AD là tia phân giác góc A nên

\(\dfrac{CD}{BD}=\dfrac{AC}{AB}=\dfrac{5}{3}\)

suy ra CD=\(\dfrac{15.\sqrt{34}}{8}\)

kẻ đường cao AH

suy ra \(AD^2=HD^2+AH^2\)

ta có AH.BC=AB.AC suy ra \(AH=\dfrac{45}{\sqrt{34}}\)

\(CH.BC=CA^2=225\) suy ra \(CH=\dfrac{75}{\sqrt{34}}\) 

suy ra \(HD=CH-CD=...\)

thay vào tính được \(AD^2\) rồi tính dc AD

 

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow AC^2=15^2-9^2=12^2\)

hay AC=12(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AH\cdot BC=AB\cdot AC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH=\dfrac{108}{15}=7.2\left(cm\right)\\CH=\dfrac{AC^2}{BC}=\dfrac{12^2}{15}=\dfrac{144}{15}=9.6\left(cm\right)\end{matrix}\right.\)

Xét ΔACH có AD là đường phân giác ứng với cạnh CH, ta được:

\(\dfrac{DH}{AH}=\dfrac{DC}{AC}\)(Tính chất đường phân giác của tam giác)

hay \(\dfrac{DH}{7.2}=\dfrac{DC}{12}\)

mà DH+DC=CH=9,6(cm)

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{DH}{7.2}=\dfrac{DC}{12}=\dfrac{DH+DC}{7.2+12}=\dfrac{9.6}{19.2}=\dfrac{1}{2}\)

Do đó:

\(DH=7.2\cdot\dfrac{1}{2}=3.6\left(cm\right)\)

Áp dụng định lí Pytago vào ΔADH vuông tại H, ta được:

\(AD^2=DH^2+AH^2\)

\(\Leftrightarrow AD^2=7.2^2+3.6^2=64.8\)

hay \(AD=\dfrac{18\sqrt{5}}{5}\left(cm\right)\)

a: BC=căn 6^2+8^2=10cm

Xét ΔABC vuông tại A có sin C=AB/BC=3/5

nên góc C=37 độ

=>góc B=53 độ

b: Xét ΔABC có AD là phân giác

nên DB/AB=DC/AC

=>DB/3=DC/4=(DB+DC)/(3+4)=10/7

=>DB=30/7cm; DC=40/7cm

c: Xét tứ giác AEDF có

góc AED=góc AFD=góc FAE=90 độ

AD là phân giác của góc EAF

=>AEDF là hình vuông

loading...  loading...