Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b,Xét tam giác ABD và tam giác HBD có :
góc A=góc H
góc ABD=góc HBD
BD:chung
suy ra ABD = HBD(CH-GN)
d: BK=BA+AK
BC=BE+EC
mà BA=BE và AK=EC
nên BK=BC
=>góc BKC=góc BCK
a) Nối BE rồi so sánh tam giác ABE và BDE
b) tam giác ADE cân, góc ADE=góc EAD, gics HAD= góc ADE(slt)
c) AK là phân giác góc ngoài đỉnh A => góc BAK = 135 độ
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=6^2+8^2=100\)
hay BC=10(cm)
Vậy: BC=10cm
a. Áp dụng định lý pitago, ta có:
\(BC^2=AB^2+AC^2\)
\(\Rightarrow AC=\sqrt{10^2-6^2}=\sqrt{64}=8cm\)
\(C_{ABC}=6+8+10=24cm\)
b. xét tam giác vuông ABD và tam giác vuông BDM, có:
B : góc chung
AD: cạnh chung
Vậy tam giác vuông ABD = tam giác vuông BDM ( cạnh huyền - góc nhọn )
Mình vẫn chưa hiểu cái câu c á bạn. Giải thích giúp mình được không?
a. Xét tam giác vuông ABC
Theo định lý Py - ta - go ta có :
AB2 + AC2 = BC2
=> 32 + AC2 = 52
=> 9 + AC2 = 25
=> AC2 = 16
=> AC = 4
Vậy AB < AC < BC
b. Xét tam giác BAM và tam giác BDM ta có :
BM chung
Góc BAM = góc BDM ( = 90 độ )
BA = BD ( gt)
=> tam giác BAM = tam giác BDM ( ch - cgv)
=> MA = MD ( hai cạnh tương ứng )
Xét tam giác AMN và tam giác DMC
góc AMN = góc DMC ( đối đỉnh )
MA = MD ( cmt)
góc MAN= góc MDC ( = 90 độ )
=> Tam giác AMN = tam giác DMC
=> MN = MC
=> Tam giác MNC cân
A) Xét ΔABD và ΔEBD có:
+) AB=BE (gt)
+) góc ABD= góc EBD (do BD là phân giác góc B)
+) BD chung
=> ΔABD = ΔEBD (c-g-c)
b)
Qua C kẻ đường thẳng vuông góc với BD tại H.
Xét ΔBCF có: BH là đường cao đồng thời là phân giác của góc B
=> ΔBCF cân tại B (tính chất)
=> BC= BF (điều phải chứng minh)
c)
Xét ΔABC và ΔEBF có:
+) AB = EB (gt)
+) góc B chung
+) BC= BF (câu b)
=> ΔABC = ΔEBF (c-g-c)
d)
Từ ý a, ΔABD = ΔEBD (c-g-c)
=> góc BAD= góc BED = 90
=> DE ⊥ BC
Xét ΔBCF có: BH và CA là 2 đường cao cắt nhau tại D
=> D là trực tâm
=> FD ⊥ BC
=> DE trùng với FD
=> D,E,F thẳng hàng
a) Ta có \(\Delta ABC\) vuông tại A
Áp dụng định lí Pi-ta-go vào \(\Delta ABC\) có:
AB2 + AC2 = BC2
=> 42 + 32 = BC2
=> BC2 = 25
=> BC = 5 cm
b) Xét tam giác ABD và tam giác HBD có:
\(\widehat{A}=\widehat{BHD}=90^o\) ( do tam giác ABC vuông tại A và HD vuông góc với BC)
\(\widehat{ABD}=\widehat{HBD}\) ( BD là đường phân giác của góc ABC)
BD là cạnh chung
=> tam giác ABD = tam giác HBD ( cạnh huyền-góc nhọn)
c) Ta có : tam giác HBD vuông tại H ( do HD vuông góc BC)
Mà BD là cạnh huyền
=> BD là cạnh lớn nhất trong tam giác HBD ( trong tam giác vuông, cạnh huyền là cạnh lớn nhất)
=> BD > BH