K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔBAC vuông tại A có 

\(BC^2=AB^2+AC^2\)

hay BC=5(cm)

b: Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(\left\{{}\begin{matrix}AH\cdot BC=AB\cdot AC\\AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH=2,4\left(cm\right)\\BH=1,8\left(cm\right)\\CH=3,2\left(cm\right)\end{matrix}\right.\)

a: Xét ΔABC vuông tại A có 

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow AC^2=13^2-5^2=144\)

hay AC=12(cm)

11 tháng 10 2023

\(BC=\sqrt{3^2+4^2}=5\)

\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\Rightarrow AH=\dfrac{12}{5}cm\)

\(AD=\sqrt{bc\left(1-\left(1-\dfrac{a}{b+C}\right)^2\right)}=\dfrac{4\sqrt{3}}{7}\)

11 tháng 10 2023

Bạn giải kỹ giúp mình dc ko ạ

 

19 tháng 10 2021

c: Xét ΔAHB vuông tại H có HM là đường cao 

nên \(AM\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HN là đường cao 

nên \(AN\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)

b: Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB^2=21\\AC^2=28\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=\sqrt{21}\left(cm\right)\\AC=2\sqrt{7}\left(cm\right)\end{matrix}\right.\)

Xét ΔABC vuông tại A có 

\(\sin\widehat{B}=\cos\widehat{C}=\dfrac{AC}{BC}=\dfrac{2\sqrt{7}}{7}\)

\(\cos\widehat{B}=\sin\widehat{C}=\dfrac{AB}{BC}=\dfrac{\sqrt{21}}{7}\)

\(\tan\widehat{B}=\cot\widehat{C}=\dfrac{AC}{AB}=\dfrac{2\sqrt{7}}{\sqrt{21}}=\dfrac{2\sqrt{3}}{3}\)

\(\cot\widehat{B}=\tan\widehat{C}=\dfrac{AB}{AC}=\dfrac{\sqrt{21}}{2\sqrt{7}}=\dfrac{\sqrt{3}}{2}\)

d) Xét ΔABC vuông tại A có 

\(\sin\widehat{B}=\dfrac{AC}{BC}=\dfrac{8}{10}=\dfrac{4}{5}\)

hay \(\widehat{B}\simeq53^0\)

Ta có: ΔABC vuông tại A(gt)

nên \(\widehat{B}+\widehat{C}=70^0\)(hai góc nhọn phụ nhau)

hay \(\widehat{C}=37^0\)

12 tháng 7 2021

Còn câu C thì sao ạ?

20 tháng 10 2021

Áp dụng PTG: \(BC=\sqrt{AB^2+AC^2}=5\left(cm\right)\)

\(\sin\widehat{B}=\cos\widehat{C}=\dfrac{AC}{BC}=\dfrac{4}{5}\\ \cos\widehat{B}=\sin\widehat{C}=\dfrac{AB}{BC}=\dfrac{3}{5}\\ \tan\widehat{B}=\cot\widehat{C}=\dfrac{AC}{AB}=\dfrac{4}{3}\\ \cot\widehat{B}=\tan\widehat{C}=\dfrac{AB}{AC}=\dfrac{3}{4}\)

13 tháng 8 2023

a) Ta có: \(cos\alpha=\dfrac{12}{13}\)

Mà: \(sin^2\alpha+cos^2a=1\)

\(\Rightarrow sin^2\alpha=1-cos^2\alpha\)

\(\Rightarrow sin^2\alpha=1-\left(\dfrac{12}{13}\right)^2\)

\(\Rightarrow sin^2\alpha=\dfrac{25}{169}\)

\(\Rightarrow sin\alpha=\sqrt{\dfrac{25}{169}}\)

\(\Rightarrow sin\alpha=\dfrac{5}{13}\)

Mà: \(tan\alpha=\dfrac{sin\alpha}{cos\alpha}=\dfrac{\dfrac{5}{13}}{\dfrac{12}{13}}=\dfrac{5}{12}\)

b) Ta có: \(cos\alpha=\dfrac{3}{5}\)

Mà: \(sin^2\alpha+cos^2\alpha=1\)

\(\Rightarrow sin^2\alpha=1-cos^2\alpha\)

\(\Rightarrow sin^2\alpha=1-\left(\dfrac{3}{5}\right)^2\)

\(\Rightarrow sin^2\alpha=\dfrac{16}{25}\)

\(\Rightarrow sin\alpha=\sqrt{\dfrac{16}{25}}=\dfrac{4}{5}\)

Mà: \(tan\alpha=\dfrac{sin\alpha}{cos\alpha}=\dfrac{\dfrac{4}{5}}{\dfrac{3}{5}}=\dfrac{4}{3}\)

2:

a: BC=căn 16^2+12^2=20cm

Xét ΔABC vuông tại A có

sin B=cos C=AC/BC=3/5

cos B=sin C=AB/BC=4/5

tan B=cot C=3/5:4/5=3/4

cot B=tan C=1:3/4=4/3

b: AH=căn 13^2-5^2=12cm

Xét ΔAHC vuông tại H có

sin C=AH/AC=12/13

=>cos B=12/13

cos C=HC/AC=5/13

=>sin B=5/13

tan C=12/13:5/13=12/5

=>cot B=12/5

tan B=cot C=1:12/5=5/12

c: BC=3+4=7cm

AB=căn BH*BC=2*căn 7(cm)

AC=căn CH*BC=căn 21(cm)

Xét ΔABC vuông tại A có

sin B=cos C=AC/BC=căn 21/7

sin C=cos B=AB/BC=2/căn 7

tan B=cot C=căn 21/7:2/căn 7=1/2*căn 21

cot B=tan C=1/căn 21/2=2/căn 21

Vì \(\widehat{B}=120^0\) nên đường cao AH ứng với cạnh BC sẽ nằm ngoài tam giác ABC

Ta có: \(\widehat{ABH}+\widehat{ABC}=180^0\)(hai góc kề bù)

\(\Leftrightarrow\widehat{ABH}+120^0=180^0\)

hay \(\widehat{ABH}=60^0\)

Xét ΔABH vuông tại H có

\(\widehat{ABH}=60^0\)(cmt)

nên \(\sin\widehat{ABH}=\dfrac{\sqrt{3}}{2}\)\(\cos\widehat{ABH}=\dfrac{1}{2}\)\(\tan\widehat{ABH}=\sqrt{3}\)\(\cot\widehat{ABH}=\dfrac{\sqrt{3}}{3}\)

Xét ΔABH vuông tại H có 

\(\widehat{BAH}=30^0\)

nên \(\sin\widehat{BAH}=\dfrac{1}{2}\)\(\cos\widehat{BAH}=\dfrac{\sqrt{3}}{2}\)\(\tan\widehat{BAH}=\dfrac{\sqrt{3}}{3}\)\(\cot\widehat{BAH}=\sqrt{3}\)