Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Do tam giác ABC vuông tại A ta có
BC.BC = AB.AB + AC.AC
=>BC.BC = 36x36 +48x48 =3600
=>BC= 60(cm)
Diện tích của tam giác ABC vuông tại A là
S = 1/2 .AB.AC
Mặt khác AH là đường cao diện tích S còn có thể bằng
S = 1/2 . AH. BC
=> AB.AC = AH.BC
=> AH = AB.AC /BC = 36x48/60 =28.8 (cm)
b) Chứng minh tam giác đồng dạng ta chỉ cần chứng minh các góc bằng nhau là được HBA đồng dạng HAC
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
=>ΔABC đồng dạng với ΔHBA
=>AB/HB=AC/HA
=>AB*HA=HB*AC
b: BC=căn 9^2+12^2=15cm
BI là phân giác
=>AI/AB=CI/BC
=>AI/3=CI/5=12/8=1,5
=>AI=4,5cm
c: S HAB/S HCA=(AB/CA)^2
b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=6^2+8^2=100\)
hay BC=10(cm)
Ta có: ΔAHB\(\sim\)ΔCAB(cmt)
nên \(\dfrac{AH}{CA}=\dfrac{HB}{AB}=\dfrac{AB}{CB}\)(Các cặp cạnh tương ứng tỉ lệ)
\(\Leftrightarrow\dfrac{AH}{8}=\dfrac{HB}{6}=\dfrac{6}{10}=\dfrac{3}{5}\)
Suy ra: \(\left\{{}\begin{matrix}\dfrac{AH}{8}=\dfrac{3}{5}\\\dfrac{HB}{6}=\dfrac{3}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH=4.8\left(cm\right)\\HB=3.6\left(cm\right)\end{matrix}\right.\)
Vậy: AH=4,8cm; HB=3,6cm
a) Xét ΔAHB vuông tại H và ΔCAB vuông tại A có
\(\widehat{ABH}\) chung
Do đó: ΔAHB\(\sim\)ΔCAB(g-g)
a: Xét ΔAHB vuông tại H và ΔCHA vuông tại H có
góc HAB=góc HCA
=>ΔAHB đồng dạng với ΔCHA
b: góc BAD+góc CAD=90 độ
góc BDA+góc HAD=90 độ
mà góc CAD=góc HAD
nên góc BAD=góc BDA
=>ΔBAD cân tại B
=>BF vuông góc AD tại F
Xét ΔEFA vuông tại F và ΔEHB vuôg tại H có
góc FEA=góc HEB
=>ΔEFA đồng dạng với ΔEHB
=>EF/EH=EA/EB
=>EF*EB=EA*EH
c: Xét ΔBAK và ΔBDK có
BA=BD
góc ABK=góc DBK
BK chung
=>ΔBAK=ΔBDK
=>góc BDK=90 độ
=>DK vuông góc BC
=>DK//AH
Cho Tam giác ABC vuông tại A(AB<AC) có đường cao ah.a chứng minh Tam giác BAH đồng dạng với Tam giác BCA.b vẽ BD là đường phân giác của Tam giác ABC cắt AH tại k. Chứng minh BA.BK=BD.BH.c qua C kẻ đường thẳng vuông góc với BD tại E. Chứng minh AE=EC.
a: Xet ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
=>ΔABC đồng dạng với ΔHBA
b: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
HB=6^2/10=3,6cm
a: Xét ΔAHB vuông tại H và ΔCHA vuôg tại H có
góc HAB=góc HCA
=>ΔAHB đồng dạng với ΔCHA
MH/MC=AH/AC=HB/AB
b: Xét ΔABE và ΔCMA có
góc BAE=góc MCA
góc ABE=góc CMA
=>ΔABE đồng dạng vơi ΔCMA
=>góc AEB=góc CAM
=>góc BEA=góc EAM
=>AM//BE
Câu b. Từ H kẻ đường thẳng song song AC cắt EM tại K
Ta chứng minh được BH/BM=EH/EA =>đpcm