\(\dfrac{sinB-sinC}{cosB-cosC}<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
23 tháng 6 2018

Lời giải:

Với tam giác $ABC$ vuông tại $A$ ta có:

\(\sin B=\frac{AC}{BC}; \sin C=\frac{AB}{BC}; \cos B=\frac{AB}{BC}; \cos C=\frac{AC}{BC}\)

Vì $AB$ khác $AC$ nên hiển nhiên \(\cos B\neq \cos C\) nên mẫu số luôn đảm bảo khác 0

Do đó:

\(\frac{\sin B-\sin C}{\cos B-\cos C}=\frac{\frac{AC}{BC}-\frac{AB}{BC}}{\frac{AB}{BC}-\frac{AC}{BC}}=\frac{AC-AB}{AB-AC}=-1< 0\)

Ta có đpcm

Bài 2: 

Gọi tam giác cần có trong đề là ΔABC vuông tại A có \(\widehat{B}=\alpha\)

Ta có: \(\tan^2B+1=\left(\dfrac{AC}{AB}\right)^2+1=\dfrac{AC^2+AB^2}{AB^2}=\dfrac{BC^2}{AB^2}\)

\(\Leftrightarrow\tan^2B+1=1:\dfrac{AB^2}{BC^2}=\dfrac{1}{\cos^2B}\)(đpcm)

loading...  loading...  loading...  

17 tháng 8 2018

đây nha bn : https://hoc24.vn/hoi-dap/question/639032.html

17 tháng 8 2018

bạn ơi mình nhấn không được

AH
Akai Haruma
Giáo viên
2 tháng 3 2018

Lời giải:

Đường tròn

Kéo dài $OA$ cắt $(O)$ tại $D$

Do $AD$ là đường kính nên $ABD$ vuông tại $B$

\(\Rightarrow \sin \widehat{BDA}=\frac{BA}{AD}=\frac{c}{2R}\)

Mà \(\widehat{BDA}=\widehat{BCA}=\widehat{C}\) (cùng chắn cung AB)

Do đó \(\sin C=\sin \widehat{BCA}=\frac{c}{2R}\Leftrightarrow \frac{c}{\sin C}=2R\)

Hoàn toàn tương tự, kẻ đường kính từ B,C ta thu được:

\(\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=2R\) (đpcm)

29 tháng 12 2021

C

11 tháng 8 2023

\(a,cosC=\dfrac{5}{13}\\ Ta,có:cos^2C+sin^2C=1\\ \Rightarrow sinC=\sqrt{1-\left(\dfrac{5}{13}\right)^2}=\dfrac{12}{13}\\ cosB+sinC=1\\ \Leftrightarrow cosB+\dfrac{12}{13}=1\\ \Rightarrow cosB=\dfrac{1}{13}\\ tanC=\dfrac{sinC}{cosC}=\dfrac{\dfrac{12}{13}}{\dfrac{5}{13}}=\dfrac{12}{5}\)

11 tháng 8 2023

\(b,tanB=\dfrac{1}{5}\Rightarrow\dfrac{sinB}{cosB}=\dfrac{1}{5}\Rightarrow cosB=5sinB\\ E=\dfrac{sinB-3cosB}{2sinB+3cosB}=\dfrac{sinB-3.5.sinB}{2sinB+3.5.sinB}=\dfrac{-14sinB}{17sinB}=-\dfrac{14}{17}\)

4 tháng 7 2018

1. Xét tam giác ABC vuông tại A có:

\(cosB=\dfrac{AB}{BC}\); \(cosC=\dfrac{AC}{BC}\) (TSLG)

=> \(\dfrac{cosB}{cosC}=\dfrac{AB}{BC}:\dfrac{AC}{BC}=\dfrac{AB}{BC}.\dfrac{BC}{AC}=\dfrac{AB}{AC}\)

2. Tam giác ADC ?

3.

a. Xét tam giác ABC vuông tại A:

+) \(cotB=\dfrac{AB}{AC}\) (TSLG)

=> \(AB=cotB.AC=2,4.5=12\left(cm\right)\)

+) \(BC^2=AB^2+AC^2\) (ĐL Pytago)

\(\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{12^2+5^2}=13\left(cm\right)\)

b. Xét tam giác ABC vuông tại A:

\(\left\{{}\begin{matrix}sinC=\dfrac{AB}{BC}=\dfrac{12}{13}\\cosC=\dfrac{AC}{BC}=\dfrac{5}{13}\\tanC=\dfrac{AB}{AC}=\dfrac{12}{5}\\cotC=\dfrac{AC}{AB}=\dfrac{5}{12}\end{matrix}\right.\) (TSLG)