K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 11 2023

A B C H E F M N

a/

Ta có

\(\widehat{A}=90^o;\widehat{MHN}=90^o\) => A và H cùng nhìn MN dưới 1 góc vuông nên A; H thuộc đường tròn đường kính MN => A; M; H; N cùng thuộc 1 đường tròn

Xét tg vuông AHC có

\(MA=MC\Rightarrow HM=MA=MC=\dfrac{AC}{2}\) (trong tg vuông trung tuyến thuộc cạnh huyền bằng nửa cạnh huyền)

=> tg AMH cân tại M \(\Rightarrow\widehat{MAH}=\widehat{MHA}\)

 \(\widehat{NAH}+\widehat{MAH}=\widehat{A}=90^o\)

\(\widehat{NHA}+\widehat{MHA}=\widehat{MHN}=90^o\)

\(\Rightarrow\widehat{NAH}=\widehat{NHA}\) => tg NAH cân tại N => NA=HN (1)

Xét tg vuông ABH có

\(\widehat{NAH}+\widehat{B}=90^o\)

\(\widehat{NHA}+\widehat{NHB}=\widehat{AHB}=90^o\)

Mà \(\widehat{NAH}=\widehat{NHA}\) (cmt)

\(\Rightarrow\widehat{B}=\widehat{NHB}\) => tg BHN cân tại N => NB=HN (2)

Từ (1) và (2) => NA=NB => N là trung điểm AB

b/

Ta có

NA=NB (cmt); MA=MC (gt) => MN là đường trung bình của tg ABC

=> MN//BC

Gọi O là giao của MN với AH. Xét tg ABH có

MN//BC => NO//BH

NA=NB (cmt)

=> OA=OH (trong tg đường thẳng đi qua trung điểm 1 cạnh và // với 1 cạnh thì đi qua trung điểm cạnh còn lại) => O à trung điểm AH

Ta có

\(HE\perp AB\left(gt\right);AC\perp AB\left(gt\right)\) => HE//AC => HE//AF

\(HF\perp AC\left(gt\right);AB\perp AC\left(gt\right)\) => HF//AB => HF//AN

=> AEHF là hình bình hành (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh)

Gọi O' là giao của EF với AH => O'A=O'H (trong hbh 2 đường chéo cắt nhau tại trung điểm mỗi đường) => O' là trung điểm của AH

Mà O cũng là trung điểm của AH (cmt)

=> \(O'\equiv O\) => AH; MN; EF cùng đi qua O

 

 

 

a: góc AHB=90 độ

=>H nằm trên đường tròn đường kính AB

góc AHC=90 độ

=>H nằm trên đường tròn đường kính AC

b: góc IHA=góc IBM

góc KHA=góc KCN

góc AMB=góc ANC-90 độ

=>góc IHK=góc IBM+góc KCN

=góc MBA+góc NCA

=180 độ-góc MAB-góc NAC
=90 độ

=>góc IHK+góc IAK=180 độ

=>A,H,I,K nội tiếp

c: góc HAK=góc HIK

góc IAH+góc HAK=90 độ

góc IAH=góc BMI

=>góc HIK=góc AMI

=>IK//MN

13 tháng 10 2023

a: Xét ΔABC vuông tại A có AH là đường cao

nên \(AH^2=HB\cdot HC\)

=>\(AH=\sqrt{4\cdot9}=6\left(cm\right)\)

Xét tứ giác ADHE có \(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)

=>ADHE là hình chữ nhật

=>DE=AH=6(cm)

b: Xét tứ giác ADHE có

\(\widehat{ADH}+\widehat{AEH}=180^0\)

=>ADHE là tứ giác nội tiếp

=>A,D,H,E cùng nằm trên 1 đường tròn

c: \(\widehat{CAK}+\widehat{BAK}=90^0\)

\(\widehat{CKA}+\widehat{HAK}=90^0\)

mà \(\widehat{BAK}=\widehat{HAK}\)

nên \(\widehat{CAK}=\widehat{CKA}\)

=>ΔCAK cân tại C

ΔCAK cân tại C

mà CI là đường trung tuyến

nên CI là đường cao

=>CI vuông góc AK

13 tháng 10 2023

 bạn vẽ hình có đc k ah ?