K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2022

a: Xét tứ giác ADCH có

M là trung điểm chung của AC và HD

góc AHC=90 độ

Do đó: ADCH là hình chữ nhật

b: Xét tứ giác ADHE có

AD//HE

AD=HE

Do đó: ADHE là hình bình hành

 

10 tháng 11 2017

a, Tứ giác adch có góc cha=90 độ và hai đường chéo cắt nhau tại trung điểm mỗi đoạn( trở thành hbh) => adch là hcn

b, do adch là hcn nên ad//ch=>ad//he và ad=ch => ad= he. 

=> adhe là hbh

10 tháng 11 2017

Thanks bạn nhiều

H mình cần gấp câu d giúp mình nhé

24 tháng 11 2019

a ) Xét ◇AHCE có :

D là trung điểm HE

D là trung điểm AC

\(\Rightarrow\)◇AHCE là hình bình hành

Mà góc AHC = 90°

\(\Rightarrow\)◇AHCE là hình chữ nhật

b ) Xét ◇AEIH có :

AI // HE ( giả thiết )

AE // IH ( do I \(\in\)BC và AE // BC )

\(\Rightarrow\)◇AEIH là hình bình hành

13 tháng 12 2017

A C B H M D E F I J

a) Xét tứ giác AHBD có MB = MA; MD = MH nên nó là hình bình hành (dhnb). 

Lại có \(\widehat{BHA}=90^o\) nên AHBD là hình chữ nhật (dhnb).

b) Do AHBD là hình chữ nhật nên AD song song và bằng HB.

Lại có HB = HE nên AD song song và bằng HE.

Xét tứ giác ADHE có AD song song và bằng HE nên nó là hình bình hành (dhnb)

c) Lấy J là trung điểm AF.

Do AB và EF cùng vuông góc với AC nên BAFE là hình thang vuông.

Lại có H, J là trung điểm các cạnh bên nên HJ là đường trung bình của hình thang.

Vậy nên HJ // AB // EF hay \(HJ\perp AF\)  

Xét tam giác AHF có HJ là trung tuyến đồng thời đường cao nên nó là tam giác cân.

Vậy thì HA = HF.

d) Xét tam giác vuông EFC có FI là trung tuyến ứng với cạnh huyền nên FI = IC hay \(\widehat{IFC}=\widehat{ICF}\)

Lại có \(\widehat{ICF}=\widehat{BAH}\) (Cùng phụ với góc HAC)

Nên \(\widehat{IFC}=\widehat{BAH}\)

Ta cũng có \(\widehat{HFE}=\widehat{JHF}\)  (Hai góc so le trong)

\(\widehat{JHF}=\widehat{JHA}\) (HJ là phân giác)

\(\widehat{JHA}=\widehat{BAH}\)  (Hai góc so le trong)

nên \(\widehat{HFE}=\widehat{BAH}\)

Vậy thì \(\widehat{IFC}=\widehat{HFE}\)

Từ đó ta có : \(\widehat{IFC}+\widehat{EFI}=\widehat{HFE}+\widehat{EFI}\Rightarrow\widehat{HFI}=\widehat{EFC}=90^o\)

Hay \(HF\perp FI\)