Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do MD\(\perp\)AB tại D =)\(\widehat{A\text{D}M}\)=900
Do ME\(\perp\)AC tại E =)\(\widehat{A\text{E}M}\)=900
Do tam giác ABC vuông tại A =) \(\widehat{BAC}\)=900
Xét tứ giác ADME có:
\(\widehat{A\text{D}M}\)=\(\widehat{A\text{E}M}\)=\(\widehat{BAC}\) ( vì cùng bằng 900)
=) ADME là hình chữ nhật
Xét tam giác ABC có :
M là trung điểm của BC
MD // AC
=) D là trung điểm của AB
Xét tam giác ABC có :
M là trung điểm của BC
ME // AB
=) E là trung điểm của AC
Xét tam giác ABC có :
D là trung điểm của AB
E là trung điểm của AC
=) DE là đường trung bình của tam giác ABC
=) DE //BC =) DE //BM (1)
Và DE= \(\frac{BC}{2}\)=BM=CM (vì M là trung điểm của BC ) (2)
Từ (1) và (2) =) BDEM là hình bình hành
bài này mình chưa học nhưng nó tương tự như bài này dưới đây mình đã học
Xét tam giác ABC:
Ta có: EB = EA, FA = FC (gt)
Nên EF // BC, EF = 1/2 BC.
Xét tam giác BDC có: HB = HD, GD = GC (gt)
Nên HG // BC, HG = 1/2 BC.
Do đó EF //HG, EF = HG.
Tương tự EH // FG, EH = FG
Vậy EFGH là hình bình hành.
a) EFGH là hình chữ nhật ⇔ EH ⊥ EF ⇔ AD ⊥ BC
b) EFGH là hình thoi ⇔ EH = EF ⇔ AD = BC
c) EFGH là hình vuông ⇔ AD ⊥ BC và AD = BC
Câu c: Ta sẽ cm góc BDN = góc HND ( vì cùng bằng góc AND)
Thật vậy: BDN = AND slt
HND = AND (dễ cm tam giác ANH cân tại N, AH dễ cm là đường cao, nên đồng thời là phân giác)
Þtứ giác BHND là hình thang cân
Câu d: Gọi I là giao điểm của HM và DK
Xét tứ giác ADBN có
BD = AN (=HN vì BHND là hình thang cânÞ BD = HN, AHCK là hcn ÞAN = HN)
suy ra Tứ giác ADBN là hbh ÞM là trung điểm của DN suy ra MD = MN
Xét tam giác EDN có MI song song EN, MD = MN (cmt)suy ra MI là đường trung bình hay ID = IE (1)
Tương tự xét tam giác KIH có NE là đường trung bình hay EK = IE (2)
Từ (1) và (2) suy ra ID = IE = EK. Vậy DE = 2EK