K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 7 2020

Câu c) 

Ta có: AD là phân giác ^BAC 

=> ^BAD = ^ DAC = ^BAC : 2 = 90o : 2 = 45o 

Xét \(\Delta\)AIB có: ^AIB = 90o; ^BAI = ^BAD = 45o 

=> ^ABI = 45o 

Xét \(\Delta\)BAM vuông tại A có: ^ABM = ^ABI = 45o => ^AMB = 45o => \(\Delta\)ABM vuông cân 

có AI là đường cao => AI là đường trung tuyến => I là trung điểm BM 

=> BM = 2 BI 

Xét \(\Delta\)ABM vuông tại A có AI là đương cao => AB = BI.BM = BI.2BI = 2BI2 

Xét \(\Delta\)ABC vuông tại A có: AH là đường cao: => AB= BH.BC 

=> BH.BC = 2BI2

23 tháng 9 2020

Một liên đội có khoảng 200 đến 300 đội viên.Mỗi lần xếp hàng 3,hàng 5 ,hàng 7 thì vừa đủ. Tính số đội viên

9 tháng 9 2018

Bài 1 

a) \(BC=125\Rightarrow BC^2=15625\)

\(\frac{AB}{AC}=\frac{3}{4}\Rightarrow\frac{AB}{3}=\frac{AC}{4}\)từ đây ta có \(\frac{AB^2}{9}=\frac{AC^2}{16}\)

Áp dụng t/c dãy tỉ số bằng nhau ta có

\(\frac{AB^2}{9}=\frac{AC^2}{16}=\frac{AB^2+AC^2}{25}=\frac{BC^2}{25}=\frac{15625}{25}=625\)

\(\frac{AB^2}{9}=625\Rightarrow AB=75\)

\(\frac{AC^2}{16}=625\Rightarrow AC=100\)

Áp dụng hệ thức lượng trong tam giác vuông ta có 

\(AB^2=BH\cdot BC\Rightarrow BH=\frac{AB^2}{BC}=\frac{5625}{125}=45\)

\(AC^2=CH\cdot BC\Rightarrow CH=\frac{AC^2}{BC}=\frac{10000}{125}=80\)

b.c) làm tương tự cũng áp dụng HTL trong tam giác vuông

Bài 2

Hình bạn tự vẽ

Ta có \(EH\\ AC\left(EH\perp AB;AC\perp AB\right)\Rightarrow\frac{BE}{AB}=\frac{BH}{BC}\Rightarrow BE=\frac{AB\cdot BH}{BC}\Rightarrow BE^2=\frac{AB^2\cdot BH^2}{BC^2}\)

\(\Leftrightarrow BE^2=\frac{BH\cdot BC\cdot BH^2}{BC^2}=BH^3\)

Bài 3 Đề bài này không đủ dữ kiện tính S của ABC

12 tháng 9 2018

Cám ơn cậu nhaaaaa

29 tháng 5 2019

DÀI QUÁ AHIHI ĐỀ BÀI NGỚ NGẨN.ĐỄ THẾ MÀ KHÔNG LÀM ĐƯỢC

29 tháng 5 2019

@quang nếu dễ thì bạn giúp mình đi^^

21 tháng 9 2020

A B C D E F H

Bài làm:

Ta có: \(\frac{AH}{HD}+\frac{BH}{HE}+\frac{CH}{HF}\)

\(=\left(\frac{AH}{HD}+1\right)+\left(\frac{BH}{HE}+1\right)+\left(\frac{CH}{HF}+1\right)-3\)

\(=\frac{AH+HD}{HD}+\frac{BH+HE}{HE}+\frac{CH+HF}{HF}-3\)

\(=\frac{AD}{HD}+\frac{BE}{HE}+\frac{CF}{HF}-3\)

\(=\frac{S_{ABC}}{S_{BHC}}+\frac{S_{ABC}}{S_{AHC}}+\frac{S_{ABC}}{S_{AHB}}-3\)

\(=S_{ABC}\left(\frac{1}{S_{BHC}}+\frac{1}{S_{AHC}}+\frac{1}{S_{AHB}}\right)-3\)

\(\ge S_{ABC}\cdot\frac{9}{S_{BHC}+S_{AHC}+S_{AHB}}-3\)

\(=S_{ABC}\cdot\frac{9}{S_{ABC}}-3\)

\(=9-3=6\)

Dấu "=" xảy ra khi H là trọng tâm tam giác ABC

=> Tam giác ABC đều => AB = AC vô lý

=> Không xảy ra dấu bằng

=> đpcm

21 tháng 9 2020

làm giùm thì được chứ subrice là ko

a, Ta có: ∆AEF ~ ∆MCE (c.g.c)

=>  A F E ^ = A C B ^

b, Ta có: ∆MFB ~ ∆MCE (g.g)

=> ME.MF = MB.MC

a, Ta có: ∆AEF ~ ∆MCE (c.g.c)

=>  A F E ^ = A C B ^

b, Ta có: ∆MFB ~ ∆MCE (g.g)

=> ME.MF = MB.MC