Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác AEB và tam giác MAD có:
\(\widehat{ABE}=\widehat{MDA}\left(=90^o\right)\)
\(\widehat{AEB}=\widehat{MAD}\) (So le trong)
Vậy nên \(\Delta AEB\sim\Delta MAD\left(g-g\right)\Rightarrow\frac{AE}{MA}=\frac{BE}{DA}\Rightarrow AE.DA=AM.BE\)
\(\Rightarrow AE^2.a^2=MA^2.BE^2\Rightarrow AE^2.a^2=MA^2\left(AE^2-AB^2\right)\)
\(\Rightarrow AE^2.a^2=MA^2.AE^2-MA^2.a^2\Rightarrow\left(AE^2+MA^2\right).a^2=AE^2.AM^2\)
\(\Rightarrow\frac{1}{AE^2}+\frac{1}{AM^2}=\frac{1}{a^2}\)
A B C D O E M G H F K
a) Xét \(\frac{a^2}{AE^2}+\frac{a^2}{AM^2}=\frac{CM^2}{ME^2}+\frac{CE^2}{ME^2}=1\)(ĐL Thales và Pytagoras). Suy ra \(\frac{1}{AE^2}+\frac{1}{AM^2}=\frac{1}{a^2}.\)
b) Ta dễ thấy \(\Delta\)ACG = \(\Delta\)ACM (c.g.c), suy ra ^AGC = ^AMC = ^BAE. Từ đây \(\Delta\)ABE ~ \(\Delta\)GBA (g.g)
Vậy BE.BG = AB2 = BO.BD nên \(\Delta\)BOE ~ \(\Delta\)BGD (c.g.c) (đpcm).
c) Gọi CH giao AB tại K. Theo hệ quả ĐL Thales \(\frac{CM}{BA}=\frac{EC}{EB}=2\)(Vì \(BE=\frac{a}{3}\))\(\Rightarrow CM=2a\)
Ta cũng có \(\frac{CF}{FM}=\frac{KB}{BA}\), suy ra \(\frac{\frac{a}{2}}{2a-\frac{a}{2}}=\frac{KB}{a}\Leftrightarrow KB=\frac{a}{3}\left(=BE\right)\)
Từ đó \(\Delta\)EKB vuông cân tại B, mà \(\Delta\)ABC vuông cân tại B nên E là trực tâm \(\Delta\)ACK
Suy ra AE vuông góc CK (tại H). Vậy, theo hệ thức lượng trong tam giác vuông (\(\Delta\)MEC) thì
\(CH^2=HE.HM\Leftrightarrow CH^3=HE.HC.HM\Leftrightarrow CH=\sqrt[3]{HE.HC.HM}\)(đpcm).
A B C D E N F K G H P
Trên tia đối của DC lấy điểm P sao cho BE=DP
Dễ dàng c/m \(\Delta\)ABE = \(\Delta\)ADP (c.g.c) => AE=AP
Và ^BAE = ^DAP => ^BAE + ^DAE = ^DAP + ^DAE => ^PAE = 900
Ta có: ^EAN + ^PAN = ^PAE = 900. Mà ^EAN = 450 => ^EAN = ^PAN = 450
Xét \(\Delta\)ANE & \(\Delta\)ANP có: AE=AP; ^EAN = ^PAN; AN chung => \(\Delta\)ANE = \(\Delta\)ANP (c.g.c)
=> ^APN = ^AEN hay ^APD = ^AEH. Mà ^APD = ^AEB (Do \(\Delta\)ABE = \(\Delta\)ADP)
=> ^AEB = ^AEH => \(\Delta\)ABE = \(\Delta\)AHE (Cạnh huyền góc nhọn) => AB=AH
Và ^BAE = ^HAE hay ^BAG = ^HAG
=> \(\Delta\)AGB = \(\Delta\)AGH (c.g.c) => ^ABG = ^AHG. Tương tự: ^ADK = ^AHK
=> ^ABG + ^ADK = ^AHG + ^AHK => ^KHG = 900 => \(\Delta\)KHG là tam giác vuông (đpcm).
=> HK2 + HG2 = KG2 . Lại có: HG=BG; HK=DK (Do \(\Delta\)AGB=\(\Delta\)AHG; \(\Delta\)AHK=\(\Delta\)ADK)
=> KG2 = DK2 + BG2 (đpcm).