K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: BC=BH+CH

=3+9

=12(cm)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH^2=HB\cdot HC\)

=>\(AH^2=3\cdot9=27\)

=>\(AH=3\sqrt{3}\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}AB=\sqrt{3\cdot12}=6\left(cm\right)\\AC=\sqrt{9\cdot12}=6\sqrt{3}\left(cm\right)\end{matrix}\right.\)

b: \(tan^2C+cot^2C\)

\(=\left(\dfrac{AC}{AB}\right)^2+\left(\dfrac{AB}{AC}\right)^2\)

\(=\dfrac{AC^2}{AB^2}+\dfrac{AB^2}{AC^2}\)

\(=\dfrac{HC\cdot BC}{HB\cdot BC}+\dfrac{HB\cdot BC}{HC\cdot CB}\)

\(=\dfrac{HC}{HB}+\dfrac{HB}{HC}\)

31 tháng 10 2023

loading...  loading...  

1 tháng 11 2023

Em cảm ơn 🥰🥰

28 tháng 7 2023

A B H D E C I

a/

\(AH^2=HB.HC\) (trong tg vuông bình phương đường cao hạ từ đỉnh góc vuông xuống cạnh huyền bằng tích các hình chiếu của 2 cạnh góc vuông trên cạnh huyền)

\(\Rightarrow AH=\sqrt{HB.HC}=\sqrt{4.9}=6cm\)

\(\tan\widehat{ABC}=\dfrac{AH}{HB}=\dfrac{6}{4}=\dfrac{3}{2}\)

b/

Xét tg vuông AHB có

\(HB^2=BD.AB\) (trong tg vuông bình phương 1 cạnh góc vuông bằng tích giữa hình chiếu cạnh góc vuông đó trên cạnh huyền với cạnh huyền)

Xét tg vuông AHC có

\(HC^2=CE.AC\) (lý do như trên)

\(CE.BD.AC.AB=HB^2.HC^2=\left(HB.HC\right)^2\)

Mà \(HB.HC=AH^2\) (cmt)

\(\Rightarrow CE.BD.AC.AB=AH^4\)

c/

\(HD\perp AB;AC\perp AB\) => HD//AC => HD//AE

\(HE\perp AC;AB\perp AC\) => HE//AB => HE//AD

=> ADHE là hình bình hành mà \(\widehat{A}=90^o\) => ADHE là HCN

Xét tg vuông ADH và tg vuông ADE có

HD = AE (cạnh đối HCN)

AD chung

=> tg ADH = tg ADE (Hai tg vuông có 2 cạnh góc vuông = nhau)

\(\Rightarrow\widehat{AED}=\widehat{AHD}\) 

\(\widehat{AHD}=\widehat{B}\) (cùng phụ với \(\widehat{BAH}\) ) 

\(\Rightarrow\widehat{AED}=\widehat{B}\) (1)

\(\widehat{C}+\widehat{B}=90^o\) (2)

\(\widehat{IAE}+\widehat{AED}=90^o\Rightarrow\widehat{IAE}+\widehat{B}=90^o\)  (3)

Từ (2) và (3) => \(\widehat{IAE}=\widehat{C}\) => tg AIC cân tại I => IA=IC

Ta có

\(\widehat{IAE}+\widehat{BAI}=\widehat{A}=90^o\)

\(\Rightarrow\widehat{C}+\widehat{BAI}=90^o\) mà \(\widehat{C}+\widehat{B}=90^o\)

\(\Rightarrow\widehat{BAI}=\widehat{B}\) => tg ABI cân tại I => IA=IB

Mà IA= IC (cmt)

=> IB=IC => I là trung điểm của BC

 

 

 

 

 

 

 

19 tháng 10 2021

c: Xét ΔAHB vuông tại H có HM là đường cao 

nên \(AM\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HN là đường cao 

nên \(AN\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)

AH
Akai Haruma
Giáo viên
15 tháng 10 2021

a.

$BC=\sqrt{AB^2+AC^2}=\sqrt{6^2+8^2}=10$ (cm) theo định lý Pitago

$AH=\frac{2S_{ABC}}{BC}=\frac{AB.AC}{BC}=\frac{6.8}{10}=4,8$ (cm)

$BH=\sqrt{AB^2-AH^2}=\sqrt{6^2-4,8^2}=3,6$ (cm) theo định lý Pitago

$CH=BC-BH=10-3,6=6,4$ (cm)

b.

Áp dụng HTL trong tam giác vuông:

$AH^2=BH.CH$

$\Rightarrow BH=\frac{AH^2}{CH}=\frac{AH^2}{CH}=\frac{9,6^2}{12,8}=7,2$ (cm)

$BC=BH+CH=7,2+12,8=20$ (cm)

$AB=\sqrt{AH^2+BH^2}=\sqrt{9,6^2+7,2^2}=12$ (cm) theo Pitago

$AC=\sqrt{BC^2-AB^2}=\sqrt{20^2-12^2}=16$ (cm) theo Pitago

 

AH
Akai Haruma
Giáo viên
15 tháng 10 2021

c.

$AB.AC=AH.BC=12.25=300$

$AB^2+AC^2=BC^2=625$

$(AB+AC)^2-2AB.AC=625$

$AB+AC=\sqrt{625+2AB.AC}=\sqrt{625+2.300}=35$

Áp dụng Viet đảo thì $AB,AC$ là nghiệm của:

$X^2-35X+300=0$

$\Rightarrow (AB,AC)=(20,15)$ (giả sử $AB>AC$)

$BH=\sqrt{AB^2-AH^2}=\sqrt{20^2-12^2}=16$ (cm)

$CH=\sqrt{AC^2-AH^2}=\sqrt{15^2-12^2}=9$ (cm)

29 tháng 10 2023

1: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC^2=3^2+4^2=25\)

=>BC=5(cm)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH\cdot BC=AB\cdot AC\)

=>\(AH\cdot5=3\cdot4=12\)

=>AH=2,4(cm)

Xét ΔABC vuông tại A có AH là đường cao

nên \(\left\{{}\begin{matrix}BH\cdot BC=BA^2\\CH\cdot CA=CA^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{3^2}{5}=1,8\left(cm\right)\\CH=\dfrac{4^2}{5}=3,2\left(cm\right)\end{matrix}\right.\)

2: Xét tứ giác AEHF có

\(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)

=>AEHF là hình chữ nhật

=>AH=EF

Xét ΔHAB vuông tại H có HE là đường cao

nên \(AE\cdot EB=HE^2\)

Xét ΔHAC vuông tại H có HF là đường cao

nên \(AF\cdot FC=HF^2\)

\(AE\cdot EB+AF\cdot FC=HE^2+HF^2=EF^2=AH^2\)

3: Xét ΔBAC vuông tại B có \(cosB=\dfrac{BA}{BC}\)

Xét ΔBHA vuông tại H có \(cosB=\dfrac{BH}{BA}\)

Xét ΔBEH vuông tại E có \(cosB=\dfrac{BE}{BH}\)

\(cos^3B=cosB\cdot cosB\cdot cosB\)

\(=\dfrac{BA}{BC}\cdot\dfrac{BH}{BA}\cdot\dfrac{BE}{BH}=\dfrac{BE}{BC}\)

=>\(BE=BC\cdot cos^3B\)

16 tháng 9 2021

AH =16cm (pitago)

BC=\(\dfrac{625}{9}\)cm (định lí 1)

HC=BC-HB=625/9-9=544/9 cm

AC=340000/81

a: Áp dụng hệ thức lượng trong tam giác vuông vào ΔBAC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH^2=HB\cdot HC\)

\(\Leftrightarrow AH^2=1.8\cdot3.2=5.76\)

hay AH=2,4cm

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB^2=1.8\cdot5=9\\AC^2=3.2\cdot5=16\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=3\left(cm\right)\\AC=4\left(cm\right)\end{matrix}\right.\)